

A web-based pavement design app

Housekeeping

You can find these slides on the MEAPA website

https://paveapps.com/meapa/

You will get a recording of this session by email

Click on the 🔜 icon and ask your questions to the panelists

Webinar objectives

Introduce MEAPA and some of its features

Provide a quick user guide

Access from any web browser

- Google Chrome is recommended
- Smartphone
- iPad/tablet
- Other handheld device
- No installation
- All data is saved in the cloud

https://paveapps.com/meapa/

MEAPA Webinar

M. Emin Kutay, Ph.D., P.E. Professor Department of Civil and Environmental Engineering Michigan State University

	 Mechanistic Empirical Asphalt x + ← → C a paveapps.com/meapaapp2/ 	ञ ६ के 🖾 🖲 🖉 🌟 🍘 :
Log-in page	<form><section-header><section-header><section-header><section-header><text><text><text></text></text></text></section-header></section-header></section-header></section-header></form>	

• • • • Attps://paveapps	com/meapaa; × +								
\leftrightarrow \rightarrow C $$ paveapps.	.com/meapaapp2/projectdetail.jsp		Q	*		0	*	≡J	() :
MEAPA ≡ meminkutay	PROJECT: Select ~	PROJECT DETAIL							
Project Detail									
Pavement Profile									
Vehicle Class Distributions									
🚔 Axle Loads 🛛 <									
Advanced Coefficients									
🔤 Analyze									
🛎 Last Run Data <		Oran (Oranta - Desirat							
🗏 Help <		Open / Create a Project.							
Feedback 🕜									
Logout 🕒									
				_	_				_
	Mechanistic Empirical Asphalt Pavement Analysis								

Initial page

Initial page

Please make sure to go through the video tutorials.

$r o { extsf{C}}$ $ ilde{ extsf{a}}$ paveapps.	com/meapaapp2/project	detail.jsp	 			QZ	r 🔼	٥	0	*	1	
MEAPA ≡ meminkutay	PROJECT : Select	eate		T DETA ×	.IL		_	_	_	_	_	
Project Detail	Ent	er new project name:										
Pavement Profile												
Vehicle Class tributions			Save Car	icel								
Axle Loads <												
Advanced Coefficients												
Last Run Data <			en / Create a Project.									
Halp (
dback 🔞												
out 🕩												

••• • S https://paveapp	s.com/meapaar × +			
\leftarrow \rightarrow C \bullet paveapps	s.com/meapaapp2/projectdeta	il.jsp		९ ★ 🔤 💿 🔉 🌧 🗄
MEAPA =	E PROJECT : I131_Sta12	22-149 v	PROJECT DETAIL	
Y Project Detail				
📚 Pavement Profile	General Project Propertie	35	Location & Climate	
Vehicle Class Distributions	AADTT	7500.0	Double click to set	t project location, then click save to see the climate station
🔺 Axle Loads 🛛 <	Directional Distribution (%)	50.0	$\mathbb{Z}/\mathbb{Z} > .$	
Advanced Coefficients	Lane Distribution (%)	95.0	Trav	erse City
🔟 Analyze	Analysis duration (years)	20.0	Bay	
陆 Last Run Data 🛛 <	Traffic Opening Month	SEPTEMBER	kë Michi	
E Help <	Traffic Opening Year	2019.0	Huron-Ma National F	orests MICHIGAN 🤯
Feedback 😯	Groundwater Table (ft)	60.0	Google	Map data ©2020 Google Terms of Use Report a map error
Logout G		5.0	Position by City	enter city U.S.A. V
			NARR Station Latitude	44.368
			NARR Station Longitude	-84.691
	Mechanistic Empirical Asphalt	t Pavement Analysis		

MEAPA meminkutay	■ PROJECT : I131_Sta12	22-149 ~	Zoom in using the wheel of
 Project Detail Pavement Profile 	General Project Propertie	25	your mouse (or swipe two fingers on your touchpad)
Vehicle Class Distributions	AADTT	7500.0	and click to set the project
 Axle Loads Advanced Coefficients 	Directional Distribution (%) Lane Distribution (%)	50.0 95.0	
🕍 Analyze	Analysis duration (years) Traffic Opening Month	20.0 SEPTEMBER	Climatic station will
🗏 Help 🗸	Traffic Opening Year	2019.0	automatically be selected.
Feedback 😧 Logout G	Groundwater Table (ft)	5.0	Google Map data 324 Terms of Use Report a map error
			Position by City U.S.A.
			NARR Station Latitude 44.368 NARR Station Longitude -84.691

\leftrightarrow \rightarrow C $$ paveapp	os.com/meapaapp2/projectdeta	il.jsp	२ ★ 🔤 🔍 🖈 🍘
MEAPA meminkutay	■ PROJECT : I131_Sta12	22-149 v	PROJECT DETAIL Save
Y Project Detail			
Pavement Profile	General Project Propertie	25	Location & Climate
Vehicle Class Distributions	AADTT	7500.0	Double click to set project location, then click save to see the climate station
🔺 Axle Loads 🛛 <	Directional Distribution (%)	50.0	
Advanced Coefficients	Lane Distribution (%)	95.0	Ose Google street view
Analyze	Analysis duration (years)	20.0	picture of the road
	Traffic Opening Year	2019.0	
Eeghack	Vehicle Speed (mph)	60.0	Resort Houghton Lake 🔞 Resort Agenty's Northwinds Resort
Logout 🗭	Groundwater Table (ft)	5.0	Map data ©2020 Terms of Use Report a map error
			Position by City enter city U.S.A.
			NARR Station Latitude 44.368
			NARR Station Longitude -84.691
	Mechanistic Empirical Asphal	: Pavement Analysis	

••• • S https://paveapp	os.com/meapaar × +			
\leftarrow \rightarrow C \bullet paveapps	s.com/meapaapp2/projectdeta	il.jsp		९ ★ 🔤 🛛 🗢 🗯 🔮
MEAPA =	E PROJECT : I131_Sta12	י2-149 ∨	PROJECT DETAIL	
Project Detail				
Pavement Profile	General Project Propertie	25	Location & Climate	
Vehicle Class Distributions	AADTT	7500.0	Double click to se	et project location, then click save to see the climate station
🛕 Axle Loads 🛛 <	Directional Distribution (%)	50.0	W Houghton Lake Dr	
Advanced Coefficients	Lane Distribution (%)	95.0	 Roscommon Township, Michigan View on Google Maps 	
🖿 Analyze	Analysis duration (years)	20.0	- Herene	
陆 Last Run Data 🛛 <	Traffic Opening Month	SEPTEMBER		
E Help <	Traffic Opening Year	2019.0		+
Feedback 🕜	Vehicle Speed (mph)	60.0	Google	© 2020 Google Terms of Use Report a problem
Logout 🕞	Groundwater Table (ft)	5.0		
			Position by City	enter city U.S.A.
			NARR Station Latitude	44.368
			NARR Station Longitude	-84.691
	Mechanistic Empirical Asphall	. Pavement Analysis		

••• https://pave	eapps.com/meapaar × +		
\leftrightarrow \rightarrow C $$ pavea	pps.com/meapaapp2/projectdetai	.jsp	२ ★ 🔤 🕒 🗯 🎲 :
MEAPA meminkutay	≡ PROJECT : I131_Sta12	2-149 v	PROJECT DETAIL Save
🚏 Project Detail			
📚 Pavement Profile	General Project Propertie	S	Location & Climate
Vehicle Class Distributions	AADTT	7500.0	Double click to set project location, then click save to see the climate station
🛕 Axle Loads 🛛 <	Directional Distribution (%)	50.0	
Advanced Coefficients	Lane Distribution (%)	95.0	
🔟 Analyze	Analysis duration (years)	20.0	
🔺 Last Run Data 🛛 <	Traffic Opening Month	SEPTEMBER Y	CDub's Resort 💝 🦉 🦓
E Help <	Traffic Opening Year	2019.0	Resort Houghton, Lake
Feedback 😯	Vehicle Speed (mph)	60.0	Google Map data ©2020 Terms of Use Report a map error
Logout 🗘	Groundwater lable (tt)	5.0	Position by City enter city U.S.A.
Cl	imate database o	an be changed	NARR Station Longitude
(fr	om/to NARR/ME	RRA2) by clicking	04001
"A	dvanced Coeffici	ents" link	
	Mechanistic Empirical Asphalt	Pavement Analysis	

→ C	os.com/meapaapp2/advanced.jsp							Q \$	<u>.</u> (0	* (
MEAPA meminkutay	■ PROJECT : I131_Sta122-149 \				ADVAN	CED COEFFICIENTS				s	ave
Project Detail	Axle Configuration				M	isc Configuration					
avement Profile	Tandem axle spacing (in)	51.6				Wheel Wander Std. Dev. (in)	10.0				
/ehicle Class butions	Tridem axle spacing (in)	49.2				Initial IRI (in/mile)	63.0		_		
xle Loads <	Quad axle spacing (in)	49.2				Climate Type	NARR				-
dvanced Coefficients	Dual tire spacing (in)	12.0				V NARR					
nalyze	Tire pressure (psi)	120.0				MERRAZ					
ast Run Data <											
elp <	FATIGUE CRACKING CALIBRATION	COEFFICIENT	S							_	
elp <	FATIGUE CRACKING CALIBRATION Bottom-Up fatigue	COEFFICIENT	S		τ	op-Down fatigue					0
elp < oack 🚱 ut 🕪	FATIGUE CRACKING CALIBRATION Bottom-Up fatigue β _{f1} , β _{f2} , and β _{f3}	0.0205	S 1.38	0.88	π	pp-Down fatigue β _{f1} , β _{f2} , and β _{f3}	0.0205	1.38	0	.88	0
elp < vack Ø ut G•	FATIGUE CRACKING CALIBRATION Bottom-Up fatigue β _{f1} , β _{f2} , and β _{f3} k _{f1} , k _{f2} , and k _{f3}	0.0205 3.75	S 1.38 2.87	0.88	π	pp-Down fatigue β ₁₁ , β ₁₂ , and β ₁₃ k ₁₁ , k ₁₂ , and k ₁₃	0.0205	1.38 2.87	0	.88	8
elp < pack @ ut G•	FATIGUE CRACKING CALIBRATION Bottom-Up fatigue β _{f1} , β _{f2} , and β _{f3} k _{f1} , k _{f2} , and k _{f3} C _{1-bu} , C _{2-bu} , and C _{4-bu}	0.0205 3.75 1.31	S 1.38 2.87 2.16	0.88	π]]	pp-Down fatigue β _{f1} , β _{f2} , and β _{f3} k _{f1} , k _{f2} , and k _{f3} C _{1-td} , C _{2-td} , and C _{4-td}	0.0205 3.75 7.0	1.38 2.87 3.5	0	.88 .46 000.0	
elp < oack @ ut G+	FATIGUE CRACKING CALIBRATION Bottom-Up fatigue βr1, βr2, and βr3 kr1, kr2, and kr3 C1-bu, C2-bu, and C4-bu Bottom-Up Fatigue Standard Deviation	0.0205 3.75 1.31 1.13 + 13/(1+ex	S 1.38 2.87 2.16 p(7.57-15.5*LOG10(f	0.88 1.46 6000.0 BOTTOM+0.0001)))	 π 	pp-Down fatigue β _{f1} , β _{f2} , and β _{f3} k _{f1} , k _{f2} , and k _{f3} C _{1-td} , C _{2-td} , and C _{4-td} Top-Down Fatigue Standard Deviation	0.0205 3.75 7.0 10 + 130/(1+exp	1.38 2.87 3.5 4(1072-2.1654*L	0 1. 1 00510(ToP+0	.888 .46 000.0	

https://paveap	ps.com/meapaar × +							
\leftarrow \rightarrow C \blacksquare paveapp	os.com/meapaapp2/layers.jsp			Q 🕁	<u>a</u> ()	0 1	F 🎯	0 0 0
MEAPA meminkutay	≡ PROJECT : 1131_Sta122-149 ~	F	PAVEMENT PROFILE					
 Project Detail Pavement Profile Vehicle Class Distributions Axle Loads Advanced Coefficients Analyze Last Run Data Help 	AC (4) EAC (3) Stability	E3 PG64-22) EE3 PG58-22) Temically ized materiat (CSM) SHITO A-1 Miravel	AC LAYERThicknessCodes (va)Codes (va) </th <th></th> <th></th> <th></th> <th></th> <th></th>					
Feedback 🥹 Logout 🕩	The input boxes edit properties of AC (4E3 PG64-22) Identifier	are located at the of the selected (hi	e lower part of the pa ighlighted) layer	o.25				
	Layer Thickness (in)	4.0	Heat Capacity (C) (btu/(lb*F))	0.23				
	Unit Weight (lb/ft3)	150.0	Thermal Conductivity (K) (btu/(hr*ft*F))	0.67				
	Air Voids (%)	7.0	Indirect Tensile Strength @ 14F (-10C) (psi)	461.7				
	Effective Binder Content by Volume (%)	10.0	Reference Temperature for E* Master Curve (F)	70.0				

	app2/layers.jsp?pos=0	0							2 2	· •	
=	PROJECT : I131_Sta	a122-149 ~				PAVEMENT	PROFILE				
	AC (4E3 PG64	-22)									
	Identifier		AC (4E3	PG64-22)		Poisson's Ratio	D		0.25		
	Layer Thi	ckness (in)		4.0		Heat Capacity	(C) (btu/(lb*F))		0.23		
<	Unit Weig	ght (lb/ft3)		150.0		Thermal Cond	uctivity (K) (btu/(l	nr*ft*F))	0.67		
5	Air Voids	(%)		7.0		Indirect Tensile (psi)	e Strength @ 14F	(-10C)	461.7		
	Effective	Binder Content by Vo	olume (%)	10.0		Reference Tem	perature for E*	Master			
· ۲	Tables like	these ca	n be eo	dited by	clicking	^{curve (F)}	ree dot	s'	70.0		
د د	Tables like	these car	n be ea	dited by	clicking	^{curve (F)}	<mark>ree dot</mark>	s'	70.0		•••
د د ٦	Tables like	these car	n be ea	dited by phase angle	clicking	curve (F)	ree dot	S'	70.0		•••
د د ا	Tables like Mixture o	these car dynamic modulus	n be ea	dited by phase angle pynamic Modulus	clicking E*I (<i>psi</i>)	Curve (F)	ree dot Phase angle	S' (degrees)	0.1Hz		•••
, « ,	Tables like Mixture of Temp/Freq 14.0	these cal dynamic modulus 25.0 Hz 3219895.0	n be ea s (/E*/) and p c 10.0 Hz 3063886.0	dited by phase angle synamic Modulus II Hz 2620710.0	Clicking E*1 (<i>psi</i>) 0.1 12 2119187.0	Curve (F) the 'th 25.0Hz 5.5	Phase angle	S' (degrees) 1.0Hz 8.8	0.1Hz 11.8		•••
د د	Tables like Mixture of Temp/Freq 14.0 F 40.0 F	these can dynamic modulus 25.0 Hz 3219895.0 2159811.0	n be each of the second	Log Log <thlog< th=""> <thlog< th=""> <thlog< th=""></thlog<></thlog<></thlog<>	Clicking E*I (psi) 0.1 H2 21191870 952944.0 0	Curve (F) the 'th 25.0Hz 5.5 11.5	Phase angle 10.0Hz 6.3 12.8	S' (degrees) 1.0Hz 8.8 16.4 16.4	0.1Hz 11.8 20.2		
د د	Tables like Mixture (14.0 F 70.0 F 130.0	these cal dynamic modulus 25.0 Hz 3219895.0 2159811.0 988273.0 105379.0	n be each of the second	Dited by bhase angle bynamic Modulus [] 1.0 Hz 2620710.0 1429729.0 472446.0 32047.0	Clicking E*1 (psi) E*1 (psi) 2119187.0 952944.0 242984.0 13495.0	Curve (F) the 'th 25.0Hz 5.5 11.5 19.9 31.1	Phase angle 10.0Hz 6.3 12.8 21.4 31.8	S' (degrees) (1.0Hz 8.8 16.4 25.1 32.8	0.1Hz 0.1Hz 11.8 20.2 28.4 32.6		

ttps://paveapps.com/meapaar ×	+											
\leftarrow \rightarrow C $($ paveapps.com/meapaapp	2/layers.jsp?pos=	D						☆	M	۲	0 *	•
MEAPA	OJECT : I131_Sta	a122-149 ~				PAVEMENT	PROFILE					
👕 Project Detail	AC (4E3 PG64	I-22)										
Pavement Profile	Identifier		AC (4E3	PG64-22)		Poisson's Ratio		0.25				
Vehicle Class istributions	Layer Thi	ickness (in)		4.0		Heat Capacity (C) (btu/(lb*F))	0.23				
Axle Loads <	Unit Weig	ght (lb/ft3)		150.0		Thermal Condu	ctivity (K) (btu/(hr*ft*F))	0.67				
Advanced Coefficients	Air Voids	(%)		7.0		Indirect Tensile (psi)	Strength @ 14F (-10C)	461.7				
센 Analyze	Effective	Binder Content by	Volume (%)	10.0		Reference Temp Curve (F)	perature for E* Master	70.0				
📥 Last Run Data 🛛 <	A	l actions	that ca	n be tak	en with	n this						
Help <	(A	C layer	E*) ta	ble				_				
eedback 🛛 😧	Mixture	dynamic modul	lus (E*) and	phase angle			Copy entire ta	ble			7	
ogout 🕞			[)ynamic Modulus I	E* (psi)		Ph Paste entire ta	ble				
	Temp/Freq	25.0 Hz	10.0 Hz	1.0 Hz	0.1 Hz	25.0Hz	10. Enter E* mas	ter curve coeff	cients		1	
	14.0 F	3219895.0	3063886.0	2620710.0	2119187.0	5.5	6.: Select E* from	n the database			1	
	40.0 F	2159811.0	1951706.0	1429729.0	952944.0	11.5		es & temperatu	res	-		
	70.0 F	988273.0	819309.0	472446.0	242984.0	19.9	21.4 25.1	4				
	130.0 F	105379.0	75759.0	32047.0	13495.0	31.1	31.8 32.8	32.6				

	app2/layer3.jsp.p03=0								~	_	
APA ≡	PROJECT : 1131_Sta122-14	49 ~				PAVEMEN	T PROFILE				
Detail	AC (4E3 PG64-22)										
t Profile	Identifier		AC (4E3	PG64-22)		Poisson's Rat	lio	0.25			
Class	Layer Thickness	ss (in)		4.0		Heat Capacit	y (C) (btu/(lb*F))	0.23			
ds <	Unit Weight (/b/	/ft3)		150.0		Thermal Cone	ductivity (K) (btu/(hr*ft	(F)) 0.67			
d Coefficients	Air Voids (%)			7.0		Indirect Tens (psi)	ile Strength @ 14F (-10	461.3	7		
	Effective Binder	er Content by Vo	olume (%)	10.0		Reference Te Curve (F)	mperature for E* Mas	er 70.0			
ı Data <	Effective Binder	er Content by Vo	olume (%)	10.0		Reference Te Curve (F)	mperature for E* Mas	70.0			
Data <	Effective Binder	er Content by Vo	olume (%)	10.0		Reference Te Curve (F)	mperature for E* Mas	70.0]	
i Data < <	Effective Binder	er Content by Vo	olume (%)	10.0		Reference Te Curve (F)	mperature for E* Mas	70.0			
n Data < < @	Effective Binder	er Content by Vo	olume (%) s (/ <i>E*</i> /) and p D	10.0 hase angle ynamic Modulus (E	:* (psi)	Reference Te Curve (F)	mperature for E* Mas Copy ent Ph Paste en	ire table	(
i Data < < ?	Effective Binder Mixture dynar Temp/Freq 25	er Content by Vo	blume (%) s (<i> E*)</i> and p D	10.0 hase angle ynamic Modulus [E 1.0	5* (psi) 0.1 H∓	Reference Te Curve (F)	Copy en Ph Paste en 10. Enter [E*	ire table tire table	e coefficie	ents	
n Data < < ?	Effective Binder Mixture dynar Temp/Freq 25 14.0 32 F	er Content by Vo mic modulus 5.0 219895.0	blume (%) s (/E*/) and p D 10.0 Hz 3063886.0	10.0 hase angle ynamic Modulus E 1.0 Hz 2620710.0	c*((psi) 0.1 Hz 2119187.0	Reference Te Curve (F) 25.0Hz 5.5	Copy en Ph Paste en 10. Enter E* 6.3 Select E	ire table tire table master curve	e coefficie tabase	ents	
i Data < < ?	Effective Binder Mixture dynar Temp/Freq 25 Hz 14.0 F 40.0 F 211 F	er Content by Vo mic modulus 5.0 219895.0 159811.0	blume (%) s (/E*/) and p D 10.0 Hz 3063886.0 1951706.0	10.0 bhase angle ynamic Modulus [E 1.0 Hz 2620710.0 1429729.0	c• (<i>psi</i>) 0.1 Hz 2119187.0 952944.0	Reference Te Curve (F) 25.0Hz 5.5 11.5	Copy ent Ph Paste en 10. Enter E* 6.: Select E Edit freq	ire table tire table master curve to from the da uencies & tem	e coefficie tabase perature:	ents	
I Data < <	Effective Binder Mixture dynar Temp/Freq 25 14.0 32 40.0 211 F 70.0 98 F 98	er Content by Vo mic modulus 5.0 z 219895.0 159811.0 88273.0	blume (%) 5 (<i>JE*J</i>) and <i>p</i> 1 0.0 Hz 3063886.0 1951706.0 819309.0	10.0 bhase angle ynamic Modulus [8 1.0 Hz 2620710.0 1429729.0 472446.0	Image: state	Reference Te Curve (F) 25.0Hz 5.5 11.5 19.9	Copy en Ph Paste en 10. Enter E* 6.: Select E Edit freq 21.4	ire table tire table master curve * from the da Juencies & tem 25.1	e coefficie tabase perature: 28.4	ents s	

•	<mark>) (</mark>	AutoSave 🔵	off 🏠 🛛	a & ∿	· ወ =				Book1								Q	
Hon	ne Inse	ert Drav	v Page	Layout	Formulas	Data	Review	View	🖗 Tell me						Ŕ	Share	Comme	nts
Pas	ste ≪	Calibri B I	(Body) <u>U</u>	 12 ₩ < 	• A^ A			Gen \$	eral ~ % ୨		E Con	ditional Form nat as Table Styles v	atting 🗸	Cells	Editing	Ideas	Sensitivity	
A1	*	× < .	fx Temp/	Freq														
_	А	В	с	D	E	F	G	Н	I	J	К	L	М	N	0	Р	Q	
1 Te	emp/Freq	25.1	10.1	5.1	1.01	0.5	0.1	25.1Hz	10.1Hz	5.1Hz	1.01Hz	0.5Hz	0.1Hz					_
2	13.82	3194098	3035752	2907305	2594582	2437881	2020900	4.8	5.4	5.8	10	7.6	9.7					-
4	69.8	973730	793759	671263	429366	350556	202806	9.9	23	24.4	27 3	28.4	19.0					-
5	98.6	326851	235027	181471	97871	77673	45506	31.2	31.9	31.7	30.7	29.3	26.8					-
6	129.2	96507	69236	52680	30764	27030	19613	30.3	28.3	27.5	25.1	. 23.4	20.7					
7																		
8														^				
9																		-
1																		-
2																		-
.3																		+
4					Tabl	le can	be na	asted	and th	ien ed	lited i	ising						
5					Tabl		oc pe	10100				191116						
6					anv	progr	am lik	ke Exc	el and	copie	ed and	d paste	ed —					_
7																		_
8					bacl	k to th	ne ME	APA t	able.									+
9																		+
1																		+
2																		+
3																		
4																		
5																		_
6																		-
7																		+
8																		+
0																		+
	▶ Sh	eet1 -	+															
-													(77)					_
Re	eady							Average:	427586.272	23 Count	: 78 Sur	n: 3035862	5.33		<u> </u>	-0-	+ 100	%

	aapp2/layers.jsp?pos=0							☆	M	٢
EAPA =	PROJECT : 1131_Sta122-149 ~				PAVEMEN	IT PROFILE				
ct Detail	AC (4E3 PG64-22)									
nent Profile	Identifier	A	C (4E3 PG64-22)		Poisson's Ra	tio	0.25			
le Class Ins	Layer Thickness (in)		4.0		Heat Capaci	ty (C) (btu/(lb*F))	0.23			
oads <	Unit Weight (lb/ft3)		150.0		Thermal Con	ductivity (K) (btu/(hr*ft*F))	0.67			
ced Coefficients	Air Voids (%)		7.0		Indirect Tens (psi)	sile Strength @ 14F (-10C)	461.7			
	Effective Binder Co	ntent by Volume (%) 10.0		Reference Te	emperature for E* Master				
ze					Curve (F)		70.0			
un Data <					Curve (F)		70.0			
ee un Data <					Curve (F)		70.0		,	
ee un Data < < @	Mixture dynamic	modulus (E*)	and phase angle		Curve (F)	Copy entire	70.0	(
ee un Data < < @ @	Mixture dynamic	modulus (E*)	and phase angle Dynamic Modulus	E* (psi)	Curve (F)	Copy entire Ph Paste entire	70.0 table table	(
ee un Data < < @ Ge	Mixture dynamic	10.0 Hz	and phase angle Dynamic Modulus	E* <i>(psi)</i> 0.1 Нz	25 <u>04</u>	Copy entire Ph Paste entire Enter E* n	70.0 table table aster curve c	coefficie	ents	
ee un Data < < @	Mixture dynamic Temp/Freq 25.0 Hz 14.0 F 321989	modulus (E*) 10.0 Hz 5.0 306388	and phase angle Dynamic Modulus 1.0 Hz 5.0 2620710.0	IE* (psi) 0.1 Hz 2119187.0	Curve (F)	Copy entire Ph Paste entire Enter E* n 6.: Select E* 5 k (table table table table table table	coefficie	ents	
ee un Data < ¢ ©	Temp/Freq 25.0 14.0 321989 F 40.0 215981 F 215981 215981	10.0 (E*) Hz 5.0 306388 1.0 1951706	Indext Indext <thindex< th=""> <thindex< th=""> Index</thindex<></thindex<>	IE*1 (<i>psi</i>) 0.1 Hz 2119187.0 952944.0	Curve (F) 25.015 5.5 11.5	Copy entire Ph Paste entire Enter E* m 6.; Select E* 12	table table aster curve c from the datal	coefficie base eratures	ents	
ee un Data < < @	Mixture dynamic Temp/Freq 25.0 Hz 321989 40.0 215981 F 215981 70.0 988273 F 988273	modulus (E*) 10.0 Hz 5.0 306388 1.0 1961700 .0 819309	and phase angle Dynamic Modulus I.0 I.2 Exercise Dynamic Modulus I.0 I.2 Exercise Dynamic Modulus I.0 I.2 Exercise Dynamic Modulus I.0	E* (<i>psi</i>) 0.1 Hz 2119187.0 952944.0 242984.0	Curve (F) 25.040 5.5 11.5 19.9	Copy entire Ph Paste entire Enter E* n 6.: Select E* 12 21.4 25.	table table table inaster curve c irom the datal incies & tempe	coefficie base eratures	ents	

	pp2/layers.jsp?pos=0									☆	M	0	0
A PA ≡ P	PROJECT : I131_Sta122-149	9 ~				PAVEMEN	T PROFILE						
Detail	AC (4E3 PG64-22)												
nt Profile	Identifier		AC (4E3 F	PG64-22)		Poisson's Rat	io		0.25				
class s	Layer Thickness	(in)		4.0		Heat Capacity	/ (C) (btu/(lb*F)		0.23				
ads <	Unit Weight (lb/ft	t3)		150.0		Thermal Conc	luctivity (K) (bt	u/(hr*ft*F))	0.67				
ed Coefficients	Air Voids (%)			7.0		Indirect Tensi (psi)	le Strength @ 1	4F (-10C)	461.7				
	Effective Binder (Content by Volum	ne (%)	10.0		Reference Ter	mperature for I	* Master	70.0				
n Data <													
¢										1			
< 8	Mixture dunam	nic modulus (I)	[E*1] and n	hase angle					1-	(
¢ 9	Mixture dynam	nic modulus (E*/) and p	hase angle ynamic Modulus (E	* (psi)		Cc Ph Pa	py entire tab ste entire tab	le Dle	(
¢	Mixture dynam	nic modulus (/i	E*[) and p	hase angle ynamic Modulus (E	* (psi)	25.0Hz	Ph Pa 10. En	py entire tab ste entire tab ter E* maste	le ole er curve co	efficie	nts		
¢	Mixture dynam Temp/Freq 25.0 Hz 14.0 3216 F 5 5	nic modulus (// 0 10 9895.0 30	E*() and p Dy 0.0 20063886.0	hase angle ynamic Modulus (E 1.0 Hz 2620710.0	* (psi) 0.1 Hz 2119187.0	25.0Hz 5.5	Ph Pa 10. En 6.3 Se	py entire tab ste entire tab ter E* maste lect E* from	le ble er curve co h the databa	pefficien ase	nts		
¢	Temp/Freq 25.0 14.0 3210 F 40.0 2156 F 2156	nic modulus (/ 0 10 9895.0 30 9811.0 19	E*() and p Dy Do38886.0 251706.0	hase angle ynamic Modulus (E 1.0 Hz 2620710.0 1429729.0	*) (<i>psi</i>) 0.1 Hz 2119187.0 952944.0	25.0Hz 5.5 11.5	Ph Pa 10. En 6. Se 12. Ed	py entire tab ste entire tab ter E* mast lect E* from it frequencie	le ole er curve co n the databa s & temper	efficien ase ratures	nts		
¢	Temp/Freq 25.0 14.0 3210 F 3210 40.0 2156 F 988 F 120.0 125	nic modulus () 0 10 Hz 9895.0 30 9811.0 19 3273.0 81 3270.0 75	E*/) and p Dy 200 200 200 200 200 200 200 200 200 20	hase angle ynamic Modulus [E 1.0 Hz 2620710.0 1429729.0 472446.0 230470	* (psi) 0.1 Hz 2119187.0 952944.0 242984.0 12405.0	25.0Hz 5.5 11.5 19.9	Ph Pa 10. En 0.3 Se 12 Ed 21.4	py entire tab ste entire tab ter E* mast lect E* from it frequencie	le ble er curve co o the databa s & temper 28.4	befficien ase ratures	nts		

••• • S https://paveapps.com/meapaar × +				
\leftarrow \rightarrow C $($ paveapps.com/meapaapp2/layer	rs.jsp?pos=0		☆ 🕺 🥥 🤇	o 🛪 🎯 E
MEAPA = PROJECT meminkutay	T : 1131_Sta122-149 Laboratory-measured E* database (4E3 PG64-22) Select HMA/WMA [481 EE20 /0 Emm)PC64.22 MUUS	DAV/EMENT PROFILE		
 Vehicle Class Distributions Axle Loads Advanced Coefficients Advanced Coefficients Analyze Last Run Data Help K 	Identifier 482, 3E30 (19mm)PG64-28, MI,US Layer Thickness (i) 483, 4E30 (12.5mm)PG70-28P, MI,US Unit Weight (lb/ft3 486, 4E10 (12.5mm)PG64-28, MI,US Vinit Weight (lb/ft3 486, 4E10 (12.5mm)PG64-28, MI,US Air Voids (%) 486, 4E10 (12.5mm)PG64-28, MI,US Effective Binder Ct 480, 4E10 (12.5mm)PG70-28P, MI,US 489, 5E10 (9.5mm)PG64-28, MI,US 489, 5E10 (9.5mm)PG70-28P, MI,US 490, 4E10 (12.5mm)PG70-28P, MI,US 490, 4E10 (12.5mm)PG70-28P, MI,US 491, 5E10 (9.5mm)PG70-28, MI,US 493, 3E3 (19mm)PG58-22, MI,US 493, 3E3 (19mm)PG58-28, MI,US 494, 3E3 (19mm)PG64-28, MI,US 494, 4E3 (12.5mm)PG64-28, MI,US 496, 4E3 (12.5mm)PG64-28, MI,US	MEAPA in E* valu Simply se the one y E* table measured	cludes a datal es for many m lect a mixture ou're designin e will be popu d data	base of measured nixtures. that is closest to ng for, and MEAPA lated with
Feedback <table-cell></table-cell>	497, 553 (9.5mm)PG64-28, MI,US 499, 653 (9.5mm)PG70-28P, MI,US 500, 453 (12.5mm)PG70-28P, MI,US 500, 453 (12.5mm)PG70-28P, MI,US 500, 453 (12.5mm)PG70-28P, MI,US 501, 553 (9.5mm)PG70-28P, MI,US 503, 553 (9.5mm)PG70-28P, MI,US 503, 553 (9.5mm)PG70-28P, MI,US 504, 451 (12.5mm)PG58-28, MI,US 505, 551 (9.5mm)PG58-28, MI,US 506, 451 (12.5mm)PG58-28, MI,US 506, 451 (12.5mm)PG64-28, MI,US	Phase angle (degrees) 10.0Hz 1.0Hz 6.3 8.8 12.8 16.4 21.4 25.1 31.8 32.8	0.1Hz 11.8 20.2 28.4 32.6	

$ \rightarrow$ C (https://paveapps.or	.com/meapaapp2/layers.js	p?pos=0							☆) 🛤		0 1	- (
MEAPA ≡ meminkutay	PROJECT : I131_St	a122-149 ~			PAV	EMENT PRO	OFILE				(Save	
Project Detail	AC (4E3 PG64	1-22)											
Pavement Profile	Identifie		AC (4E3	PG64-22)		Poisson's Ratic	þ		0.25				
Vehicle Class stributions	Layer Th	ickness (in)		4.0		Heat Capacity	(C) (btu/(lb*F))		0.23				
Axle Loads <	Unit Wei	ght (lb/ft3)		150.0		Thermal Condu	uctivity (K) (btu/	(hr*ft*F))	0.67				
Advanced Coefficients	Loaded E'	* data is	showr	n with di	fferent	ndirect Tensile 'psi)	e Strength @ 14F	(-10C)	461.7				
Analyze	color.					Reference Tem	perature for E*	Master	70.0				
Analyze Last Run Data <	color.					Reference Tem Surve (F)	perature for E*	Master	70.0				
Analyze Last Run Data < Help <	color. Make sure	to save u	using th	e butto	n on	Reference Tem	perature for E*	Master	70.0				
Analyze Last Run Data < Help < edback @	color. Make sure the upper	to save u right corr	using th ner	e butto	n on	Reference Tem Surve (F)	perature for E*	Master	70.0		•		
Analyze Last Run Data < Help < edback @ gout ©	color. Make sure the upper	to save u right corr	using th ner		1 ON E* (psi)	Reference Tem	pperature for E* Phase angle	Master	70.0		•••		
Analyze Last Run Data < Help < kdback @ yout ©	Color. Make sure the upper	to save u right corr	using the ner	e buttor	n on E*I (psi)	25.0Hz	Phase angle	Master • (degrees) 1.0Hz	0.1Hz		:		
Analyze Last Run Data < Help < edback @ gout @	color. Make sure the upper Temp/Freq 14.0 F	to save u right corr	using th ner	e buttor pynamic Modulus 1.0 Hz 2422625	1 ON E*1 (<i>psi</i>) 0.1 Hz 1940641	25.0Hz 4.72	Phase angle 10.0Hz 5.59	Master (degrees) 1.0Hz 8.28	0.1Hz 11.7				
Analyze Last Run Data < Help < edback @ gout ©	Color. Make sure the upper Temp/Freq 14.0 F	25.0 H2 2985631 1994293 272405	Using th ner 2840894 1793233	Pynamic Modulus 1.0 Hz 2422625 1287706	C ON E*I (<i>psi</i>) 1940641 830495.3 100700.7	25.0Hz 4.72 11.3 21.0	Phase angle 10.0Hz 5.59 12.8 22.8	Master (degrees) 1.0Hz 8.28 17.0 2.00	0.1Hz 11.7 21.4 20.6				
Analyze Last Run Data < Help < edback @ gout ©	color. Make sure the upper Temp/Freq 14.0 F 70.0 F 130.0	to save u right corr 25.0 42 2995631 1994293 873400.5 7844844	Using th ner 10.0 2840894 1793233 1712951.0 55429.70	Image: Point of the second s	I O II E*I (psi) 0.1 0.1 1940641 1940643 190396.7 190396.7 190396.7	Zeference Tem Zurve (F) 25.0Hz 4.72 11.3 21.0 33.0	Phase angle 10.0Hz 5.59 12.8 22.8 33.5	Master a (degrees) a (10-12) a (20, 20, 20, 20, 20, 20, 20, 20, 20, 20,	70.0 0.1Hz 11.7 21.4 30.6 32.2		•••		

••• • S https://paveapps.com	m/meapaa; ×	+													
\leftrightarrow \rightarrow C \bullet paveapps.com	m/meapaapp2/la	iyers.jsp?pos=0								⊕ ☆	M	٢	0 1	F (Ç
MEAPA meminkutay	≡ Pi	ROJECT : 1131_	_Sta122-149 ~				PAVEMEN	NT PROFIL	.E						
Project Detail		Identifie	er	AC (4E3	3 PG64-22)		Poisson's Ra	tio		0.25					
		Layer T	hickness (in)		4.0		Heat Capaci	t y (C) (btu/(lb*)	F))	0.23					
		Unit We	ight (lb/ft3)		150.0		Thermal Con (btu/(br*ft*F)	ductivity (K)		0.67					
venicle Class Distributions		Air Void	s (%)		7.0		Indirect Tens	íle Strength @	14F						
Axie Loads <	F*	is extens	sively us	ed thro	ughout	the	(-10C) (psi)	mnarature for	15*1	461.7					
Advanced Coefficients	algori	ithms (st	ructural	analysi	is etc.)	the	Master Curve	e (F)	15.1	70.0					
네 Analyze	01801	(00		anaryo											
📥 Last Run Data 🛛 <	Phase	e angle is	s onlv us	ed (alo	ng with										
E Help <	E*)	to com	, oute (via	interco	onversio	n)					:				
Feedback 😯	relaxa	ation mo	dulus (E	(t)) ma	ster cur	ve,		Phase angle	(degrees)						
Logout 🕩	which	<mark>i is need</mark>	ed only	in the t	hermal		25.0Hz	10.0Hz	1.0Hz	0.1Hz					
	crack	ing mod	el				4.7	5.6	8.3	11.7					
		40.0 F	1994293.0	1793233.0	1287706.0	830495.0	11.3	12.8	17.0	21.4					
		70.0 F	873401.0	712951.0	391832.0	190399.0	21.0	22.8	27.0	30.6					
		130.0 F	78448.0	55430.0	22865.0	9721.0	33.0	33.5	33.7	32.2					
								1							
	Mechani	stic Empirical As	phalt Pavem <u>ent</u> .	Analysis							_				ļ

	app2/layers.jsp?pos=0							Ð	☆ /	•
MEAPA ≡ meminkutay	PROJECT : 1131_S	ita122-149 ~				PAVEMEN	NT PROFILE			
Project Datail	Identifier		AC (4E3	PG64-22)		Poisson's Ra	tio	0.25		
	Layer Thi	ckness (in)		4.0		Heat Capaci	ty (C) (btu/(lb*F))	0.23		
	Unit Weig	jht (lb/ft3)		150.0		Thermal Con (btu/(hr*ft*F)	ductivity (K)	0.67		
Venicle Class Distributions	Air Voids	(%)		7.0		Indirect Tens	sile Strength @ 14F			
Axle Loads <	Effective	Binder Content	by Volume			(-10C) (psi)	-	461.7		
Advanced Coefficients	(%)			10.0		Reference Te Master Curve	emperature for E* e (F)	70.0		
Analyze										
🔺 Last Run Data 🛛 <										
									(:
Help <	Mixture	dynamic mo	dulus (E*) a	and phase an	gle		Copy entire tal	ole	-	
			Dyna	mic Modulus IE*						
edback 🕜			Dyna		(psi)		Paste entire ta	ble		
edback 🕜 gout 🕩	Temp/Freq	25.0	10.0	1.0	0.1	25.0Hz	Paste entire ta Enter E* mas	ble ter curve coeffi	cients	6
eedback 🥑 ogout 🕩	Temp/Freq 14.0	25.0 Hz 2985631.0	10.0 Hz 2840894.0	1.0 Hz 2422625.0	0.1 Hz 1940641.0	25.0Hz	Paste entire ta Enter E* mas Select E* fror	ble ter curve coeffi m the database	cients	5
eedback 🤪 ogout C†	Temp/Freq 14.0 F 40.0	25.0 Hz 2985631.0 1994293.0	10.0 Hz 2840894.0 1793233.0	1.0 Hz 2422625.0 1287706.0	0.1 Hz 1940641.0 830495.0	25.0Hz 4.7 11.3	Paste entire ta Enter E* mas Select E* fror Edit frequencie	ble ter curve coeffi n the database es & temperatu	cients res	5
eedback 🥑 bgout G•	Temp/Freq 14.0 F 40.0 F 70.0	25.0 Hz 2985631.0 1994293.0 873401.0	10.0 Hz 2840894.0 1793233.0 712951.0 179323.0	1.0 HZ 2422625.0 1287706.0 391832.0 1287206.0	l (psi) 0.1 Hz 1940641.0 830495.0 190399.0	25.0Hz 4.7 11.3 21.0	Paste entire ta Enter E* mas Select E* fror Edit frequencie	ble ter curve coeffi n the database es & temperatu o 30.6	cients	5
eedback 🥥 ogout C†	Temp/Freq 14.0 F 40.0 F 70.0 F 130.0	25.0 Hz 2985631.0 1994293.0 873401.0 78448.0	10.0 Hz 2840894.0 1793233.0 712951.0 55430.0	1.0 Hz 2422625.0 1287706.0 391832.0 22865.0	I (psi) 0.1 Hz 1940641.0 830495.0 190399.0 9721.0	25.0Hz 4.7 11.3 21.0 33.0	Paste entire ta Enter E* mas Select E* from Edit frequencie 22.8 27. 33.5 33	ble ter curve coeffi n the database es & temperatu o 30.6 7 32.2	cients	5

https://paveapps.com/meapaa	× +												
🗧 🔶 C 🔒 paveapps.com/meapaa	pp2/layers.jsp?pos=0								⊕ tà	M	٢	Ç)
MEAPA =	PROJECT : I131_S	ta122-149 🗸											
meminkutay		Edit freque	ncies/tempe	ratures		×	_	_					
- Draiget Datail	Identifie								0.25				
Project Detain	Layer Th	Enter the ur	nique frequen duplicate fre	cies, separate	d by comma. I	Make sure	C) (btu/(lb*l	=))	0.23				
Pavement Profile	Unit Wei			quencies.			ctivity (K)						
Vehicle Class Distributions		25,10,1, 0.	1						0.67				
Axle Loads	Air Void:	Enter the ur	nique tempera	atures, separat	ed by comma	. Make sure	Strength @	14F	461.7				
	Effective	there are no	o duplicate ter	nperatures.			voraturo for	15*1					
Advanced Coefficients	(70)	14, 40,70,	130)	1- 1	70.0				
🕮 Analyze													
🛎 Last Run Data 🛛 <					Save	Cancel							
										:			
Help <	Mixture	dynamic mo	dulus (E*)	and phase an	qle								
Feedback 3			Dyna	amic Modulus E ⁴	' (psi)		Phase angle	(degrees)					
Logout 🕩	Temp/Freq	25.0	10.0	1.0	0.1	25.0Hz	10.0Hz	1.0Hz	0.1Hz				
	14.0	Hz	Hz	Hz	Hz	47	5.6	8.3	11.7				
	F	2965651.0	2840894.0	2422025.0	1940041.0	4.7	5.0	0.5	11.7				
	40.0 F	1994293.0	1793233.0	1287706.0	830495.0	11.3	12.8	17.0	21.4				
	70.0 F	873401.0	712951.0	391832.0	190399.0	21.0	22.8	27.0	30.6				
	130.0	78448.0	55430.0	22865.0	9721.0	33.0	33.5	33.7	32.2				
	4												

https://paveapps.com/meap	aa; × +						<u> </u>		
← → C paveapps.com/mea MEAPA	paapp2/layers.jsp?pos=0 PROJECT : I131_Sta122-	-149 v		PAVEME		E	9 x		* 🧐
* Project Detail	C Mixture d	oata is clea enter or loa	red to remine ad values from	d the user <mark>h the data</mark>	r to abase			:	
Pavement Profile		D	ynamic Modulus E* <i>(psi)</i>		Phase angle (degrees)			
Vehicle Class Distributions	Temp/Freq 25.	0 10.0	1.0 0.1	25.0Hz	10.0Hz	1.0Hz	0.1Hz		
Axle Loads <	Hz Hz	Hz 0.0	Hz Hz 0.0 0.0	0.0	0.0	0.0	0.0		
Advanced Coefficients	F 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0		
Analyze	F 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0		
Last Run Data	F 130.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0		
	F								
Help <									
eedback 😯						:			
ogout 🕒		Binder d	lynamic shear modulus	& phase angle					
		Temp	G* (Pa) at 10 rad,	s Phase angle (d	degrees) at 10 rad/s				
		40.0 F	1.641803E7	56.0					
		70.0 F	2377859.0	58.7					
		100.0 F	207206.0	60.9					
		130.0 F	19922.0	62.6					
		168.0 F	2503.0	63.9					
	Mechanistic Empirical Asphalt P	avement Analysis							

		3	https://paveapps.com/meapaar	×	+
--	--	---	------------------------------	---	---

 $\leftarrow \rightarrow$ C (paveapps.com/meapaapp2/layers.jsp?pos=0

९ 🖈 🔤 🌖 🔉 🗯 :

MEAPA meminkutav	≡ PRC)JECT : 1131_9	Sta122-149 ~				PAVEME		Ξ	
ŕ				Dyna	mic Modulus E*	(psi)		Phase angle (d	legrees)	
T Project Detail		Temp/Freq	25.0	10.0	1.0	0.1	25.0Hz	10.0Hz	1.0Hz	0.1Hz
📚 Pavement Profile		14.0	Hz	Hz	Hz	Hz	4.0	5.0	0.7	12.4
		F	2841067.0	2714442.0	2336971.0	1664137.0	4.0	5.6	0.7	12.4
Venicle Class Distributions		40.0 F	1958536.0	1766414.0	1271775.0	814106.0	11.8	13.4	17.7	22.1
🛕 Axle Loads 🛛 <		70.0	875239.0	711895.0	384531.0	182089.0	21.5	23.1	26.9	29.4
Advanced Coefficients		130.0	75592.0	53152.0	22018.0	9688.0	30.4	30.3	28.8	25.8
IN Assess		F								
Analyze Analyze										
📥 Last Run Data 🛛 <								1	-	
									- :)	
E Help <				Binder dyna	amic shear m	odulus & ph	ase angle		Cop	v Entire Table
Feedback 😯			Те	mp	IG*I (Pa) :	at 10 rad/s	Phase angle (de	orrees) at 10 rad/s	Pas	te Entire Table
			40	0.0	1.641803	7	56.0	.grees, at to taa,s	Sole	ct IG*I from the datab
Logout 🕩			F	0.0	2377859 (n	58.7		Jek	
			F	5.0	2077000.		00.7			
			10 F	0.0	207206.0		60.9			
			13	30.0	19922.0		62.6			
			16	58.0	2503.0		63.9			
			F							
				E	0*1	1				
			used in	n Global Aging S	/stem (GAS) mode	el. GAS model w	ill be turned off	nd phase angle are when G* = 0.	e only	
	Mechanisti									
https://paveapps.com/meapaappz/laye	15.Jsh:h05-0#									

••• • • • https://paveapps.c	com/meapaa; × +									
\leftarrow \rightarrow C \textcircled{a} paveapps.c	om/meapaapp2/layers.jsp?pos=0					⊕ ☆	M (0	* 🤅	:
MEAPA		Sta122-149 ~								
meminkutay		Laboratory-measured G* database	×	_						
Project Detail				hase angle (e	degrees)					
Project Detail	Temp/Freq	Select PG		10.0Hz	1.0Hz	0.1Hz				
Pavement Profile	14.0	PG58-22		5.8	8.7	12.4				
Vehicle Class Distributions	40.0	PG58-28 PG58-34		13.4	17.7	22.1				
🔺 Axle Loads 🛛 🔍	F 70.0	PG64-22 PG64-28		23.1	26.9	29.4				
Advanced Coefficients	F 130.0	PG64-34P		30.3	28.8	25.8				
	F	PG70-28P								
🖿 Analyze										
🕍 Last Run Data 🛛 🖌										
					:					
Help K										
Feedback 🕜				s) at 10 rad/s						
Logout 🕒										
			Cancel Load	hase angle ar	e only					
	Mechanistic Empirical As	phalt Pavement Analysis								

The equation above represents the $|E^*|$ master curve of the EAC layer in its undamaged state. Effect of damage on the $|E^*|$ master curve is modeled through the following relationship:

$$|E^*|_{\text{damaged}} = 10^{c_1} + \frac{|E^*|_{\text{undamaged}} - 10^{c_1}}{1 + e^{-0.3 + 5\log(D_{bu}^{EAC}(t))}}$$
[153]

where;

 $|E^*|_{\text{damaged}} = D_{hu}^{EAC}(t) =$

Typical CSM layer modulus is initially quite high. However, as fatigue damage grows within the CSM layer, this modulus decreases with time. Reduction of modulus of CSM layer is modeled using the following relationship:

$$E(t) = E_{min} + \frac{E_{max} - E_{min}}{1 + e^{-4 + 14D_{csm}^{cum}(t)}}$$
[146]

	ineapaappe, remerearen ba			_		_	_	_	_		_	_	_	
MEAPA E meminkutay	■ PROJECT :	1131_Sta122-7	149 ~				V	EHICI	E DIST	ribut	IONS			
T Project Detail	Veh	icle Class	Distrib	ution									:	
Pavement Profile	Class													
Vehicle Class Distributions	Name	Class %	Gr	rowth %	Grov	wth Type	# of Single A	xles #	of Tandem Ax	les # of T	ridem Axles	# of Quad A	xles	
	Class 4 Class 5	27.37	3.	.0	con	npound 🗸	2.0	0.	36	0.0		0.0		
Axle Loads <	Class 6	5.01	3.	.0	con	npound 🗸	1.0	1.0)	0.0		0.0		
Advanced Coefficients	Class 7	0.77	3.	.0	line	ar 🗸	1.06	0.	06	0.59		0.35		
	Class 8	4.42	3.	.0	con	npound 🗸	2.28	0.	74	0.0		0.0		
🔟 Analyze	Class 9	45.44	3.	.0	con	npound ¥	1.29	1.4	35	0.0		0.0		
A Last Run Data	Class 11	1.07	3.	0	line	ar V	1.54	1.0	n	0.31		0.56		
				-					-					
	Class 12	0.22	3.	.0	line	ar 🗸	3.85	0.	96	0.0		0.0		
E Help <	Class 12 Class 13 Total =	0.22 6.82 100.0 %	3.	0	line	ar 💙	3.85 2.03	0. 1.4	96	0.0 0.36		0.0 0.61		
E Help <	Class 12 Class 13 Total =	0.22 6.82 100.0 %	3.	0	line	ar 🗸	3.85 2.03	0. 1.4	96 1	0.0		0.0		
E Help < Feedback O Logout O	Class 12 Class 13 Total =	0.22 6.82 100.0 % Monta	3. 3. hly Dist	o o tribution	line line	ar V ar V	3.85	0.	96	0.0		0.0 0.61		
Help < Feedback @ Logout @	Class 12 Class 13 Total =	0.22 6.82 100 0 %	3. 3. hly Dist s Class 4	0 0 tribution Class 5	line line	aar V aar V	3.85 2.03 Class 8	0. 1.4 Class 9	96 1 Class 10	0.0 0.36 Class 11	Class 12	0.0 0.61		
E Help 〈 Feedback ♀ Logout ि	Class 12 Class 13 Total =	0.22 6.82 Monta Month JANUARY	3. 3. hly Dist s Class 4 0.8	0 0 tribution Class 5 0.8	Class 6 0.8	ar v ar v Class 7 0.8	3.85 2.03 Class 8 0.9	0. 1.4 Class 9 0.9	eee Class 10 0.9	0.0 0.36 Class 11 0.87	Class 12 0.87	0.0 0.61 Class 13 0.87		
Help (Feedback @ Logout G	Class 12 Class 13 Total =	0.22 6.82 Monta Month/Clas JANUARY FEBRUARY	3. 3. hly Dist is Class 4 0.8 0.89	0 0 tribution Class 5 0.8 0.89	line line	ar	3.85 2.03 Class 8 0.9 0.95	0. 1.4 Class 9 0.9 0.95	296 1 Class 10 0.99 0.95	0.0 0.36 Class 11 0.87 0.89	Class 12 0.87 0.89	0.0 0.61 Class 13 0.87 0.89		
E Help 〈 Feedback @ Logout P	Class 12 Class 13 Total =	0.22 6.82 Monta Month\Class JANUARY FEBRUARY MARCH APRIL	3. 3. hly Dist is Class 4 0.8 0.89 0.88 0.93	0 0 tribution 0.8 0.8 0.88 0.93	(line line D Factors Class 6 0.8 0.89 0.88 0.93	ar	3.85 2.03 Class 8 0.9 0.95 0.98 1.01	0. 1.4 Class 9 0.9 0.95 0.95 0.98	Class 10 0.95 0.95 101	0.0 0.36 0.38 0.87 0.89 0.88 0.96	Class 12 0 0.87 0.89 0.88 0.96	0.0 0.61 Class 13 0.87 0.88 0.88		
⊟ Help 〈 Feedback ♀ Logout ₽	Class 12 Class 13 Total =	0.22 6.82 Montal Month(Class JANUARY FEBRUARY FEBRUARY MARCH APRIL MAY	3. 3. hly Dist s Class 4 0.8 0.89 0.88 0.93 1.02	0 0 tribution 0.8 0.8 0.88 0.9 0.88 0.93 1.02	(line (line) (li	ar	3.85 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03	Class 9 0.9 0.95 0.98 1.01 1.06	Class 10 0.9 0.95 0.98 1.01 1.06	0.0 0.36 0.38 0.87 0.89 0.88 0.96 0.96	Class 12 4 0.87 0.89 0.88 0.96 0.96 1.05	0.0 0.61 Class 13 0.87 0.89 0.88 0.89 0.86 0.96 0.96		
⊟ Help 〈 Feedback	Class 12 Class 13 Total =	0.22 6.82 CG 0.5 S Month Class JANUARY FEBRUARY MARCH APRIL APRIL MAY	3. 3. hly Dist s Class 4 0.8 0.89 0.88 0.93 1.02 1.14	0 0 tribution 0.8 0.89 0.88 0.93 1.02 1.14	(line line b Factors Class 6 0.8 0.89 0.88 0.93 1.02 1.14	ar	3.85 2.03 2.103 2.105 2.	Class 9 0.9 0.95 0.98 1.01 1.06 1.13	Class 10 0.9 0.95 0.95 0.95 1.01 1.06 1.13	0.0 0.36 0.36 0.85 0.87 0.89 0.88 0.96 1.05 1.17	Class 12 0 0.87 0 0.89 0 0.88 0 0.96 0 1.05 1	0.0 0.61 ** Class 13 0.87 0.89 0.88 0.88 0.86 0.05 1.05		
E Help < Feedback ♀ Logout C+	Class 12 Class 13 Total =	0.22 6.82 CGD 5. MonthClass JANUARY FEBRUARY MARCH APRIL APRIL JUNE JUNE	3. 3. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	0 0 0 0 0 0 0 0 0 8 0 0 8 0 0 9 0 0 8 0 9 0 0 8 0 0 9 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0	Eline	ar	3.85 2.03 2.03 2.03 2.03 2.05 0.95 0.95 0.95 0.95 0.95 1.01 1.01 1.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2	Class 9 0.9 0.95 0.98 1.01 1.06 1.13 0.98	Class 10 0.9 0.95 0.95 0.95 1.01 1.01 1.06 1.13 0.98	0.0 0.36 0.36 0.8 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.9 0.1 0.1 0.1 1.0 1.0 1.0 1.0 1.0	Class 12 0 0.87 0 0.89 0 0.88 0 0.96 0 1.05 0 1.17 1 0.7 0	0.0 0.61 Class 13 0.87 0.89 0.88 0.98 0.98 0.98 1.17 1.17		
Help ∢ Feedback @ .ogout G	Class 12 Class 13 Total =	0.22 6.82 CROPX MonthClass JANUARY FEBRUARY MARCH APRIL MAY JUNE JULY ALGUST	3. 3. 3. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	0 0 tribution Class 5 0.8 0.89 0.89 0.89 0.89 0.83 1.02 1.14 1.18 1.19 1.12	Elass 6 0.8 0.89 0.88 0.93 1.02 1.14 1.18 1.19	ar	3.85 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03	Class 9 0.9 0.95 0.95 1.01 1.06 1.13 0.98 1.08	Class 10 0.9 0.95 0.95 1.01 1.01 1.04 1.13 0.98 1.08	0.0 0.36 0.36 0.87 0.87 0.89 0.88 0.96 0.88 0.96 0.10 1.05 1.07	Class 12 0 0.87 0 0.88 0 0.96 0 1.05 1 1.17 1 0.07 1.1	0.0 0.61 ** Class 13 0.87 0.89 0.88 0.96 0.88 1.17 1.1 1.07 1.1		
∎ Help K Feedback I I I Logout I I I I I I I I I I I I I I I I I I I	Class 12 Class 13 Total =	0.22 6.82 CROPX MonthClass JANUARY FEBRUARY MARCH APRIL MAY JUNE JULY AUGUST SEPTEMBER OCTOBER	3. 3. 3. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	0 0 tribution Class 5 0.8 0.89 0.88 0.93 1.02 1.14 1.18 1.19 1.13 1.06	line line Class 6 0.8 0.89 0.88 0.93 1.02 1.14 1.18 1.19 1.13 1.06	ar	3.85 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03	Class 9 0.9 0.95 0.95 1.01 1.06 1.13 0.98 1.08 1.08 1.03	Class 10 0.9 0.95 0.98 1.01 1.03 1.03 1.03 1.08 1.08	0.0 0.36 0.36 0.87 0.89 0.88 0.96 0.88 0.96 0.10 1.05 1.17 1.07 1.1 1.07	Class 12 0 0.87 0 0.88 0 0.96 1 1.05 1 1.17 1 1.07 1 1.1 1.07 1 1.1	0.0 0.61 Class 13 0.87 0.89 0.88 0.96 0.88 0.96 0.105 1.05 1.07 1.17 1.07 1.1		
■ Help 〈 Feedback	Class 12 Class 13 Total =	0.22 6.82 CROP X Month Class JANUARY FEBRUARY MARCH APRIL MAY JUNE JULY AUGUST SEPTEMBER OCTOBER NOVEMBER	3. 3. 3. 3. 3. 3. 3. 3. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Elass 6 0.8 0.83 0.83 0.93 1.02 1.14 1.18 1.19 1.13 1.06 0.96	ar	3.85 2.03 2.03 2.03 2.03 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04	Class 9 0.9 0.95 1.01 1.06 1.13 0.98 1.01 1.06 1.03 1.08 1.08 1.03 1.03	Class 10 0.9 0.95 0.95 0.95 1.01 1.06 1.03 1.03 1.08 1.05 0.98	0.0 0.36 0.36 0.87 0.87 0.89 0.80 0.96 0.10 1.05 1.07 1.1 1.07 1.1 1.07 1.11 1.07	Class 12 0 0.87 1 0.89 0.98 0 0.88 0 0.96 1 1.05 1 1.07 1 1.17 1 1.07 1 1.11 1 1.01	0.0 0.61 Class 13 0.87 0.89 0.88 0.96 0.88 0.96 0.88 1.05 1.07 1.17 1.07 1.11 1.07 1.11 1.07		

paveapps.com/m	eapaapp2/axiesingi	lsb		Q 17	100	0,	* (
MEAPA =	PROJEC	: I131_Sta122-149 ~ AXLE LOADS	- SINGLE				
meminkutay							L,
,							
_							
Project Detail							•
Devenue and Dev file	Month Class Total	%) 3kip 4kip 5kip 6kip 7kip 8kip 9kip 10kip 11kip 12kip 13kip 14kip 15kip 16kip 17kip 18kip 19kip 20kip 21kip 22ki	ip 23kip 24kip 25kip 26kip 27kip 28kip	29kip 30kip 3	1kip 32kip	33kip 34	ikip
Pavement Profile	JANU/ 4 100.0	0.19 0.22 0.48 1.65 3.15 7.91 8.88 12.58 11.91 13.73 10.92 7.02 6.56 3.91 3.33 1.97 1.69 1.09 0.92 0.53	3 0.41 0.28 0.15 0.11 0.06 0.04	0.03 0.03 0	.02 0.02	0.01 0.	14
Valiala Olana Distributiona	JANU) 5 100.0	2.62 15.7 17.11 15.0 8.65 9.15 5.92 5.89 4.38 4.09 3.0 1.86 1.75 1.09 1.03 0.63 0.6 0.37 0.34 0.19	0.15 0.1 0.05 0.04 0.02 0.02	0.01 0.01 0	.01 0.0	0.0 0.	0
e Venicle Class Distributions	JANU) 6 100.0	0.35 0.88 1.22 1.81 2.18 5.14 7.38 13.84 16.11 16.5 10.85 6.3 5.55 3.18 2.71 1.62 1.47 0.94 0.82 0.44	4 0.3 0.19 0.09 0.05 0.04 0.02	0.01 0.01 0	.01 0.01	0.0 0.	0
Axio Loado	JANU) 7 100.0	2.19 1.74 1.77 2.23 1.91 2.65 2.87 4.35 5.04 7.72 8.58 7.88 10.34 8.1 8.62 6.23 6.04 3.96 3.0 1.61	1.26 0.74 0.4 0.27 0.17 0.12	0.06 0.05 0	.03 0.02	0.01 0.	01
- Alice Estados	JANU/ 8 100.0	1.56 2.15 3.32 5.07 6.18 10.6 11.5 14.11 9.46 8.24 6.43 4.31 4.58 3.05 3.05 1.91 1.65 0.89 0.69 0.36	3 0.27 0.16 0.09 0.07 0.04 0.04	0.02 0.02 0	.01 0.01	0.01 0.	01
Single	JANU) 9 100.0	1.42 2.7E 2.4E 2.8E 2.47 4.72 7.33 16.74 20.7: 18.7E 8.21 2.89 2.04 1.3 1.55 1.12 1.06 0.57 0.41 0.2	0.15 0.08 0.04 0.03 0.02 0.01	0.01 0.01 0	.0 0.0	0.0 0.	0
	JANU/ 10 100.0	0.44 0.52 0.5€ 0.9€ 1.24 2.76 4.3€ 9.98 13.74 17.48 13.12 7.45 7.1 4.59 4.67 3.05 2.89 1.65 1.35 0.68	3 0.52 0.31 0.16 0.13 0.08 0.06	0.03 0.03 0	.02 0.02	0.01 0.	01
Tandom	JANU/ 11 100.0	1.23 1.14 2.6€ 6.12 5.0E 7.28 8.0E 12.82 10.0E 9.6 8.0 5.85 6.43 4.31 4.01 2.38 2.06 1.11 0.81 0.38	3 0.26 0.14 0.07 0.05 0.03 0.02	0.01 0.01 0	.01 0.01	0.01 0.	.0
Tandem	JANU) 12 100.0	0.9: 1.57 3.14 6.75 6.25 8.68 9.41 12.65 10.05 10.07 8.35 5.11 4.82 3.01 2.81 1.76 1.51 1.03 0.75 0.46	3 0.27 0.15 0.12 0.11 0.03 0.02	0.02 0.01 0	.01 0.02	0.01 0.	0
Tridom	JANU) 13 100.0	3.65 2.81 2.5 2.82 2.41 2.86 2.73 6.0 9.2 12.8 10.91 7.23 7.55 5.21 5.54 3.78 3.66 2.24 1.91 1.06	i 0.88 0.59 0.33 0.31 0.18 0.17	0.1 0.09 0	.06 0.06	0.04 0.	.04
	FEBRL 4 100.0	0.19 0.22 0.48 1.65 3.15 7.91 8.88 12.58 11.91 13.73 10.92 7.02 6.56 3.91 3.33 1.97 1.69 1.09 0.92 0.53	3 0.41 0.28 0.15 0.11 0.06 0.04	0.03 0.03 0	.02 0.02	0.01 0.	.14
a	FEBRL 5 100.0	2.62 15.7 17.11 15.0 8.6E 9.15 5.92 5.89 4.38 4.09 3.0 1.86 1.75 1.09 1.03 0.63 0.6 0.37 0.34 0.19	0.15 0.1 0.05 0.04 0.02 0.02	0.01 0.01 0	.01 0.0	0.0 0.	.0
Quad	FEBRL 6 100.0	0.35 0.88 1.22 1.81 2.18 5.14 7.38 13.84 16.11 16.5 10.85 6.3 5.55 3.18 2.71 1.62 1.47 0.94 0.82 0.44	4 0.3 0.19 0.09 0.05 0.04 0.02	0.01 0.01 0	.01 0.01	0.0 0.	0
	FEBRL 7 100.0	2.19 1.74 1.77 2.23 1.91 2.65 2.87 4.35 5.04 7.72 8.58 7.88 10.34 8.1 8.62 6.23 6.04 3.96 3.0 1.61	1.26 0.74 0.4 0.27 0.17 0.12	0.06 0.05 0	.03 0.02	0.01 0.	.01
Advanced Coefficients	FEBRL 8 100.0	1.56 2.15 3.32 5.07 6.18 10.6 11.5 14.11 9.46 8.24 6.43 4.31 4.58 3.05 3.05 1.91 1.65 0.89 0.69 0.36	5 0.27 0.16 0.09 0.07 0.04 0.04	0.02 0.02 0	.01 0.01	0.01 0.	.01
M Apolyzo	FEBRL 9 100.0	1.42 2.7€ 2.4€ 2.8€ 2.47 4.72 7.33 16.74 20.7: 18.78 8.21 2.89 2.04 1.3 1.55 1.12 1.06 0.57 0.41 0.2	0.15 0.08 0.04 0.03 0.02 0.01	0.01 0.01 0	.0 0.0	0.0 0.	.0
Analyze	FEBRL 10 100.0	0.44 0.52 0.56 0.96 1.24 2.76 4.36 9.98 13.74 17.48 13.12 7.45 7.1 4.59 4.67 3.05 2.89 1.65 1.35 0.68	3 0.52 0.31 0.16 0.13 0.08 0.06	0.03 0.03 0	.02 0.02	0.01 0.	.01
Lact Run Data (FEBRL 11 100.0	1.23 1.14 2.6€ 6.12 5.0Ε 7.28 8.0Ε 12.82 10.05 9.6 8.0 5.85 6.43 4.31 4.01 2.38 2.06 1.11 0.81 0.38	3 0.26 0.14 0.07 0.05 0.03 0.02	0.01 0.01 0	.01 0.01	0.01 0.	.0
	FEBRL 12 100.0	0.9: 1.57 3.14 6.7: 6.2: 8.6E 9.41 12.6: 10.0: 10.07 8.35 5.11 4.82 3.01 2.81 1.76 1.51 1.03 0.75 0.46	6 0.27 0.15 0.12 0.11 0.03 0.02	0.02 0.01 0	.01 0.02	0.01 0.	.0
	FEBRL 13 100.0	3.65 2.81 2.5 2.82 2.41 2.86 2.73 6.0 9.2 12.8 10.91 7.23 7.55 5.21 5.54 3.78 3.66 2.24 1.91 1.06	5 0.88 0.59 0.33 0.31 0.18 0.17	0.1 0.09 0	.06 0.06	0.04 0.	.04
Help <	MARC 4 100.0	0.19 0.22 0.48 1.65 3.15 7.91 8.88 12.59 11.91 13.73 10.92 7.02 6.56 3.91 3.33 1.97 1.69 1.09 0.92 0.53	3 0.41 0.28 0.15 0.11 0.06 0.04	0.03 0.03 0	.02 0.02	0.01 0.	14
	MARC 5 100.0	2.62 15.7 17.14 15.0 8.65 9.15 5.92 5.89 4.38 4.09 3.0 1.86 1.75 1.09 1.03 0.63 0.6 0.37 0.34 0.19	0.15 0.1 0.05 0.04 0.02 0.02	0.01 0.01 0	.01 0.0	0.0 0.	.0
eedback 🕜	MARC 6 100.0	0.32 0.86 1.22 1.81 2.18 5.14 7.38 13.84 16.11 16.5 10.85 6.3 5.55 3.18 2.71 1.62 1.47 0.94 0.82 0.44	4 0.3 0.19 0.09 0.05 0.04 0.02	0.01 0.01 (.01 0.01	0.0 0.	.0
	MARC 7 100.0	2.19 1.74 1.77 2.23 1.91 2.65 2.87 4.35 5.04 7.72 8.58 7.88 10.34 8.1 8.62 6.23 6.04 3.96 3.0 1.61	1.26 0.74 0.4 0.27 0.17 0.12	0.06 0.05 (.03 0.02	0.01 0.	.01
ogout 🕩	MARC 8 100.0	1.56 2.15 3.32 5.07 6.18 10.6 11.5 14.11 9.46 8.24 6.43 4.31 4.58 3.05 3.05 1.91 1.65 0.89 0.69 0.36	3 0.27 0.16 0.09 0.07 0.04 0.04	0.02 0.02 (.01 0.01	0.01 0.	.01
	MARC 9 100.0	1.42 2.76 2.48 2.88 2.47 4.72 7.33 16.74 20.7: 18.78 8.21 2.89 2.04 1.3 1.55 1.12 1.06 0.57 0.41 0.2	0.15 0.08 0.04 0.03 0.02 0.01	0.01 0.01 (.0 0.0	0.0 0.	.0
	MARC 10 100.0	0.44 0.52 0.56 0.96 1.24 2.76 4.36 9.98 13.74 17.48 13.12 7.45 7.1 4.59 4.67 3.05 2.89 1.65 1.35 0.68	3 0.52 0.31 0.16 0.13 0.08 0.06	0.03 0.03 (.02 0.02	0.01 0.	.01
	MARC 11 100.0	1.23 1.14 2.6€ 6.12 5.0E 7.28 8.0E 12.82 10.05 9.6 8.0 5.85 6.43 4.31 4.01 2.38 2.06 1.11 0.81 0.38	3 0.26 0.14 0.07 0.05 0.03 0.02	0.01 0.01 (.01 0.01	0.01 0.	.0
	MARC 12 100.0	0.93 1.57 3.14 6.75 6.25 8.68 9.41 12.65 10.05 10.07 8.35 5.11 4.82 3.01 2.81 1.76 1.51 1.03 0.75 0.46	5 0.27 0.15 0.12 0.11 0.03 0.02	0.02 0.01 (.01 0.02	0.01 0.	.0
	MARC 13 100.0	3.65 2.81 2.5 2.82 2.41 2.86 2.73 6.0 9.2 12.8 10.91 7.23 7.55 5.21 5.54 3.78 3.66 2.24 1.91 1.06	3 0.88 0.59 0.33 0.31 0.18 0.17	0.1 0.09 (.06 0.06	0.04 0.	.04
	APRIL 4 100.0	0.19 0.22 0.48 1.65 3.15 7.91 8.88 12.59 11.91 13.73 10.92 7.02 6.56 3.91 3.33 1.97 1.69 1.09 0.92 0.53	3 0.41 0.28 0.15 0.11 0.06 0.04	0.03 0.03 (.02 0.02	0.01 0.	.14
	APRIL 5 100.0	2.62 15.7 17.1(15.0 8.65 9.15 5.92 5.89 4.38 4.09 3.0 1.86 1.75 1.09 1.03 0.63 0.6 0.37 0.34 0.19	0.15 0.1 0.05 0.04 0.02 0.02	0.01 0.01 (.01 0.0	0.0 0.	.0
	APRIL 6 100.0	0.3; 0.8; 1.22 1.81 2.18 5.14 7.38 13.84 16.11 16.5 10.8; 6.3 5.55 3.18 2.71 1.62 1.47 0.94 0.82 0.44	4 0.3 0.19 0.09 0.05 0.04 0.02	0.01 0.01 (.01 0.01	0.0 0.	.0
	APRIL 7 100.0	2.19 1.74 1.77 2.2; 1.91 2.65 2.87 4.35 5.04 7.72 8.58 7.88 10.34 8.1 8.62 6.23 6.04 3.96 3.0 1.61	1.26 0.74 0.4 0.27 0.17 0.12	0.06 0.05 (0.03 0.02	0.01 0	.01
	4000				01 0.01		

Single Axle Load Distribution:

Tandem Axle Load Distribution:

 $NA_{i,t,w_k}^{tridem} = Number of tridem axles, for each month$ *i*(*i*= 1 ... 12), for year*t*(*t*= 1 ...*t_a*, where*t_a*is analysis duration), corresponding to axle weight*w_k*, where*k*= 1 ... 31 and*w_k*= 12000, 15000, ... 102000 (lb).

 NA_{i,t,w_k}^{quad} = Number of quad axles i, for each month i ($i = 1 \dots 12$), for year t ($t = 1 \dots t_a$, where t_a is analysis duration), corresponding to axle weight w_k Where $k = 1 \dots 31$ and $w_k = 12000, 15000, \dots 102000$ (lb).

Example sub-layering of a three-layer structure and analysis points for the single axle dual tire configuration

Example structural response computed by MatLEA sub algorithm in MEAPA

meminkutay	PROJECT : 1131_Sta122-149	~			ADVANCED COEFF	CIENTS				
Troject Detail	Axle Configuration				Misc Configuration					
📚 Pavement Profile	Tandem axle spacing (in)	51.6			Wheel Wander Std.	Dev. (in)	10.0			
Vehicle Class Distributions	Tridem axle spacing (in)	49.2			Initial IRI	in/mile)	63.0			
🛕 Axle Loads 🛛 🖌	Quad axle spacing (in)	49.2			Clima	te Type	NARR			
Advanced Coefficients	Dual tire spacing (in)	12.0			Climat	e Model	Original			
🗠 Analyze	Tire pressure (psi)	120.0								
陆 Last Run Data 🛛 <		120.0								
	FATIGUE CRACKING CALIBRATION		TS							
Feedback 😧 Logout Թ	FATIGUE CRACKING CALIBRATION Bottom-Up fatigue	I COEFFICIEN	TS	•••••••••••••••••••••••••••••••••••••••	Top-Down fatigue					e
Feedback 🚱 Logout 🕞	FATIGUE CRACKING CALIBRATION Bottom-Up fatigue $\beta_{f1},\beta_{f2}, \text{and } \beta_{f3}$	0.0205	1.38	0.88	Top-Down fatigue β ₁₁ , β ₁₂ ,	and β _{f3}	0.0205	1.38	0.8	6 38
Feedback <section-header></section-header>	FATIGUE CRACKING CALIBRATION Bottom-Up fatigue $\beta_{f1}, \beta_{f2}, \text{and } \beta_{f3}$ $k_{f1}, k_{f2}, \text{and } k_{f3}$	0.0205 3.75	TS 1.38 2.87	0.88	Top-Down fatigue β _{f1} , β _{f2} , k _{f1} , k _{f2} ,	and β _{f3} and k _{f3}	0.0205 3.75	1.38	0.8	6
Feedback	FATIGUE CRACKING CALIBRATION Bottom-Up fatigue β _{f1} , β _{f2} , and β _{f3} k _{f1} , k _{f2} , and k _{f3} C _{1-bu} , C _{2-bu} , and C _{4-bu}	0.0205 3.75 1.31	TS 1.38 2.87 2.16	0.88 0.88 1.46 6000.0	<i>Τορ-Down fatigue</i> β ₁₁ , β ₁₂ , k ₁₁ , k ₁₂ , C _{1-td} , C _{2-td} , an	and β _{f3} and k _{f3} d C4-td	0.0205 3.75 7.0	1.38 2.87 3.5	0.8	6 00.0
Feedback <section-header></section-header>	FATIGUE CRACKING CALIBRATION Bottom-Up fatigue β ₁₁ , β ₁₂ , and β ₁₃ k ₁₁ , k ₁₂ , and k ₁₃ C _{1-bu} , C _{2-bu} , and C _{4-bu} Bottom-Up Fatigue Standard Deviation	0.0205 3.75 1.31 1.13 + 13/(1+ex	75 1.38 2.87 2.16 p(7.57-15.5*L0010	0.88 0.88 1.46 6000.0	Top-Down fatigue βr1, βr2, kr1, kr2, C1-td, C2-td, and Top-Down Fatigue St De	and β_{f3} and k_{f3} d C_{4-td} andard viation	0.0205 3.75 7.0 10 + 130/(1+exp	1.38 2.87 3.5 9(1.072-2.1654*LC	0.8 1.40 100	88 66 00.0
Feedback	FATIGUE CRACKING CALIBRATION Bottom-Up fatigue β _{f1} , β _{f2} , and β _{f3} k _{f1} , k _{f2} , and k _{f3} C _{1-bu} , C _{2-bu} , and C _{4-bu} Bottom-Up Fatigue Standard Deviation	0.0205 3.75 1.31 1.13 + 13/(1+ex	1.38 1.38 2.87 2.16 p(7.57-16.5*LOG()	0.88 0.88 1.46 6000.0	Top-Down fatigue β ₁₁ , β ₁₂ , k ₁₁ , k ₁₂ , C _{1-1d} , C _{2-1d} , an Top-Down Fatigue St De	and β_{f3} and k_{f3} d C_{4-td} andard viation	0.0205 3.75 7.0 10 + 130/(1+exp	1.38 2.87 3.5 3(1072-2.1654*LC	0.8 1.40 100	6 00.0

ightarrow C $(here)$ paveapps.com	n/meapaapp2/advanced.jsp								Q \$	🤊 🔤 🙆 🔍	* 🤅
MEAPA meminkutay	■ PROJECT : I131_Sta122-149 ·	~			A	DVANCED	COEFFICIENT	S			
Project Detail	Axle Configuration					Misc Configu	ration				
Pavement Profile						Wheel Wa	nder Std. Dev. (in)	10.0			
Vehicle Class Distributio	<pre>tevised' = An impro</pre>	oved cl	imati	c model,			Initial IRI (in/mile)	63.0			
Axle Loads CC	orrected for the ef	fects o	f clou	d cover or	n 1	the	Climate Type	NARR			~
Advanced Coefficients	ongwave radiation.	See do	ocum	entation f	or	·	Climate Model	Original			~
ast Run Data	ore details.						✓ Original Revised				
lelp < back 🕜	FATIGUE CRACKING CALIBRATION	COEFFICIENT	S								
ut 🕩	Bottom-Up fatigue			0		Top-Down fa	tigue				0
ut 🕩	Bottom-Up fatigue $\beta_{f1},\beta_{f2},\text{and }\beta_{f3}$	0.0205	1.38	0.88		Top-Down fa	tigue $\beta_{f1},\beta_{f2},\text{and }\beta_{f3}$	0.0205	1.38	0.88	0
ut G	Bottom-Up fatigue $\beta_{f1},\beta_{f2},\text{ and }\beta_{f3}$ $k_{f1},k_{f2},\text{ and }k_{f3}$	0.0205	1.38 2.87	0.88 1.46		Top-Down fa	tigue $\beta_{f1}, \beta_{f2}, \text{and } \beta_{f3}$ $k_{f1}, k_{f2}, \text{and } k_{f3}$	0.0205	1.38 2.87	0.88	8
ut 6	Bottom-Up fatigue β _{f11} β _{f2} , and β _{f3} k _{f1} , k _{f2} , and k _{f3} C _{1-bu} , C _{2-bu} , and C _{4-bu}	0.0205 3.75 1.31	1.38 2.87 2.16	0.88 1.46 6000.0		Top-Down fa	tigue β _{f1} , β _{f2} , and β _{f3} k _{f1} , k _{f2} , and k _{f3} d, C _{2-td} , and C _{4-td}	0.0205 3.75 7.0	1.38 2.87 3.5	0.88	
ut 🕪	Bottom-Up fatigue β _{f11} β _{f2} , and β _{f3} k _{f1} , k _{f2} , and k _{f3} C _{1-bu} , C _{2-bu} , and C _{4-bu} Bottom-Up Fatigue Standard Deviation	0.0205 3.75 1.31 1.13 + 13/(1+exp)	1.38 2.87 2.16 (7.57-15.5*L0G10	0.88 1.46 6000.0		Top-Down fa	tigue β _{f1} , β _{f2} , and β _{f3} k _{f1} , k _{f2} , and k _{f3} d, C _{2-td} , and C _{4-td} Fatigue Standard Deviation	0.0205 3.75 7.0 10 + 130/(1+ex	1.38 2.87 3.5 p(1.072-2.1654*LO	0.88 1.46 1000.0 G10(ToP+0.0001)))	
ut GP	Bottom-Up fatigue β _{f1} , β _{f2} , and β _{f3} k _{f1} , k _{f2} , and k _{f3} C _{1-bu} , C _{2-bu} , and C _{4-bu} Bottom-Up Fatigue Standard Deviation	0.0205 3.75 1.31 1.13 + 13/(1+exp)	1.38 2.87 2.16 (7.57-15.5*L0010	0.88 1.46 6000.0		Top-Down fa C ₁₋₁ Top-Down	tigue β _{f1} , β _{f2} , and β _{f3} k _{f1} , k _{f2} , and k _{f3} d, C ₂ -td, and C ₄ -td Fatigue Standard Deviation	0.0205 3.75 7.0 10 + 130/(1+ex)	1.38 2.87 3.5 9(1.072-2.1654*LO	0.88 1.46 1000.0	
ut	Bottom-Up fatigue β _{f11} , β _{f2} , and β _{f3} k _{f1} , k _{f2} , and k _{f3} C _{1-bu} , C _{2-bu} , and C _{4-bu} Bottom-Up Fatigue Standard Deviation LAYER RUTTING CALIBRATION COM	0.0205 3.75 1.31 1.13 + 13/(1+exp)	1.38 2.87 2.16 (757-15.5+L0010	 0.88 1.46 6000.0 BOTTOM+0.0001))) 		Top-Down fa	tigue β _{f1} , β _{f2} , and β _{f3} k _{f1} , k _{f2} , and k _{f3} d, C _{2-td} , and C _{4-td} Fatigue Standard Deviation	0.0205 3.75 7.0 10 + 130/(1+ex	1.38 2.87 3.5 pt1.072-2.1654*L0	0.88 1.46 1000.0	?

Distresses computed by MEAPA

	Pavement type:	AC-GB	AC-CSM	AC- EAC- GB	AC- EAC- CSM	AC- GB-	AC- GB-
Distress output				00	CSIVI	-GB	CSM
AC top-down fatigue cracking (ft/mile)		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
AC bottom-up fatigue cracking (%)		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
AC thermal cracking (ft/mile)		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Rutting – AC, base subbase and subgrade (in)		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Reflective cracking (% lane area)		-	\checkmark	\checkmark	√ (1)	-	-
Chemically stabilized layer - fatigue fracture da	amage (% lane area)	-	\checkmark	-	\checkmark	-	-
Existing AC layer - fatigue fracture damage (%	lane area)	-	-	\checkmark	\checkmark	-	-
International Roughness Index (IRI) (in/mile)	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

• • • • S https://paveapps	s.com/meapaal × +						
\leftarrow \rightarrow C \bullet paveapps	.com/meapaapp2/Analyze.jsp		☆	M	٢	0 1	þ
MEAPA meminkutay	■ PROJECT : II31_Sta122-149 ~ Run Analysis Optimize Thickness	ANALYZE					
 Project Detail Pavement Profile 	Analysis run settings						
Vehicle Class Distributions	Distress save period (months):						
Axle Loads <	Structural response 240.0						
🕍 Analyze	Download JSON						
Help <							
Feedback 😨 Logout 🕩							
	ankali Davomont Analysia						
4:	sphart Pavement Analysis						

paveapps.com/mea	apaapp2/ResultsAtRe	I.Jsp?relc	alcu-1										
MEAPA meminkutay	≡ PRO.	JECT :	1131_Sta	a122-149	~				RESU	LTS			
oject Detail		Re	liability	and Te	rminal L	Distresse	5						
vement Profile		Distres	s			Threshold	F	eliability	Distr	ess Comput	ted @ 20.0 v	vear(s) P	Pass/Fail
		IRI (in/m	nile)			172.0	g	0	142.5			P	ASS
hicle Class Distributions		AC Top-	-Down Fatig	ue Crackino	(ft/mile)	2000.0	8	30	1930.	9		Р	ASS
		AC Bott	om-up Fatig	que Crackin	g (%)	25.0	8	30	1.0			P	PASS
e Loads <		AC The	rmal Crackir	ng (ft/mile)		1000.0	5	30	141.4			P	ASS
		Total Ru	utting (in)			0.75	ç	90	0.34			P	ASS
vanced Coefficients		AC Rutt	ing (in)			0.25	ç	90	0.2			P	ASS
		AC Refle	ective Crack	(ing (%)		25.0		20	0.0			P	PASS
			couve oraci			20.0	:	0	0.0				
alyze				(ing (70)		20.0	5		0.0				
alyze st Run Data <				ung (70)		20.0			0.0				
st Run Data <		Dis	stresse	S		20.0			0.0				:
alyze st Run Data < lip < ick Ø		Dis	IRI (in/mile) (@ 50% reliability)	Rutting Total (in) (@ 50% reliability)	Rutting AC only(in) (@ 50% reliability)	Bottom-up Fatigue Cracking(%) (@ 50% reliability)	Top-down Fatigue Cracking(ft/mile (@ 50% reliability)	Thermal 9) Cracking(ft/mile) (@ 50% reliability)	IRI (in/mile) (@ 90% reliability)	Rutting Total (in) (@ 90% reliability)	Rutting AC only(in) (@ 90% reliability)	Bottom-up Fatigue Cracking(% (@ 80% reliability)	Top-dowr Fatigue) Cracking((@ 80% reliability
Run Data <		Dis Month	IRI (in/mile) (@ 50% reliability) 63.0	Rutting Total (in) (@ 50% reliability) 0.081	Rutting AC only(in) (@ 50% reliability) 0.018	Bottom-up Fatigue Cracking(%) (@ 50% reliability) 0.0	Top-down Fatigue Cracking(ft/mile (@ 50% reliability) 0.4	Thermal 9) Cracking(ft/mile) (@ 50% reliability) 0.0	IRI (in/mile) (@ 90% reliability) 71.1	Rutting Total (in) (@ 90% reliability) 0.121	Rutting AC only(in) (@ 90% reliability) 0.031	Bottom-up Fatigue Cracking(% (@ 80% reliability) 1.0	Top-dowr Fatigue) Cracking((@ 80% reliability 22.7
ze vun Data < < ?		Dis Month 1 2	IRI ((m/mile) ((@ 50% reliability) 63.0 66.5	Rutting Total (in) (@ 50% reliability) 0.081 0.087	Rutting AC only(in) (@ 50% reliability) 0.018 0.018	Bottom-up Fatigue Cracking(%) (@ 50% reliability) 0.0	Top-down Fatigue Cracking(ft/mile (@ 50% reliability) 0.4 0.6	Thermal e) Cracking(ft/mile) (@ 50% reliability) 0.0 0.0	IRI (in/mile) (@ 90% reliability) 71.1 88.9	Rutting Total (in) (@ 90% reliability) 0.121 0.128	Rutting AC only(in) (@ 90% reliability) 0.031	Bottom-up Fatigue Cracking(% (@ 80% reliability) 1.0 1.0	Top-dowr Fatigue) Cracking(@ 80% reliability 22.7 29.3
n Data < <		Dis Month 1 2 3	IRI ((m/mile) ((m 50%) reliability) 63.0 66.5 66.6	Rutting Total (in) (@ 50% reliability) 0.081 0.087 0.089	Rutting AC only(in) (@ 50%) reliability) 0.018 0.018 0.018	Bottom-up Fatigue Cracking(%) (@ 50% reliability) 0.0 0.0 0.0 0.0	Top-down Fatigue Cracking(ft/mila (@ 50% reliability) 0.4 0.6 0.8	Thermal c) Cracking(ft/mile) (@ 50% reliability) 0.0 0.0 0.0 0.0	IRI (in/mile) (@ 90% reliability) 71.1 88.9 89.0	Rutting Total (in) (@ 90% reliability) 0.121 0.128 0.131	Rutting AC only(in) (@ 90%) reliability) 0.031 0.032	Bottom-up Fatigue Cracking(% (@ 80% reliability) 1.0 1.0 1.0	Top-dowr Fatigue) Cracking(@ 80% reliability 22.7 29.3 32.5
Data < <		Dis Month 1 2 3 4	IRI (in/mile) (@ 50% reliability) 63.0 66.5 66.6 66.7	Rutting Total (in) (@ 50% reliability) 0.081 0.087 0.089 0.091	Rutting AC only(in) (@ 50% reliability) 0.018 0.018 0.018 0.018	Bottom-up Fatigue Cracking(%) (@ 50% reliability) 0.0 0.0 0.0 0.0	Top-down Fatigue Cracking(ft/mile (@ 50% reliability) 0.4 0.6 0.8 0.9	Thermal) Cracking(ft/mile) (@ 50% reliability) 0.0 0.0 0.0 0.0	IRI (in/mile) (@ 90% reliability) 71.1 88.9 89.0 89.0 89.2	Rutting Total (in) (@ 90% reliability) 0.121 0.128 0.131 0.133	Rutting AC only(in) (@ 90%) reliability) 0.031 0.032 0.032	Bottom-up Fatigue Cracking(% (@ 80% reliability) 1.0 1.0 1.0 1.0	Top-dowr Fatigue) Cracking((@ 80% reliability 22.7 29.3 32.5 35.1
Data < <		Dis Month 1 2 3 4 5	IRI (in/mile) (@ 50% reliability) 63.0 66.5 66.6 66.7 66.8 66.7	Rutting Total (in) (@ 50% reliability) 0.081 0.087 0.089 0.091 0.092	Rutting AC only(in) (@ 50% reliability) 0.018 0.018 0.018 0.018	Bottom-up Patigue Cracking(%) (@ 50% reliability) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Top-down Fatigue Cracking(ft/mili (@ 50% reliability) 0.4 0.6 0.6 0.8 0.9 1.0	Thermal e) Cracking(ft/mile) (@ 50% reliability) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	IRI (in/mile) (@ 90% reliability) 71.1 88.9 89.0 89.2 89.3 89.3	Rutting Total (in) (@ 90% reliability) 0.121 0.128 0.131 0.133 0.135	Rutting AC only(in) (@ 90%) reliability) 0.031 0.032 0.032 0.032	Bottom-up Fatigue Cracking(%) (@ 80% reliability) 1.0 1.0 1.0 1.0 1.0	Top-dowr Fatigue) Crackingi (@ 80% reliability 22.7 29.3 32.5 35.1 37.8
Data < <		Dis Month 1 2 3 4 5 6 6 7	IRI (in/mile) (@ 50% reliability) 66.5 66.6 66.6 66.7 66.8 66.9 67.0	Rutting Total (in) (@ 50% reliability) 0.081 0.087 0.089 0.091 0.092 0.094	Rutting AC only(in) (@ 50% reliability) 0.018 0.018 0.018 0.018 0.018	Bottom-up Fatigue Cracking(%) (@ 50% reliability) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Top-down Fatigue Cracking(ft/mile (@ 50% reliability) 0.4 0.6 0.8 0.9 1.0 1.2 1.2	Thermal e) Cracking(ft/mile) (@ 50% reliability) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	IRI (in/mile) (@ 90% reliability) 71.1 88.9 89.0 89.2 89.3 89.4 89.4	Rutting Total (in) (@ 90% reliability) 0.121 0.128 0.131 0.133 0.135 0.137	Rutting AC only(in) (@ 90%) reliability) 0.031 0.032 0.032 0.032 0.032 0.032	Bottom-up Fatigue Cracking(%) (@ 80% reliability) 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Top-down Fatigue () Cracking() (20.3 29.3 32.5 35.1 37.8 40.6 43.4
un Data < < ?		Dis Month 1 2 3 4 5 6 7 7 8	RI ((in/mile) (@ 50% reliability) 63.0 66.5 66.6 66.7 66.8 66.9 67.0 67.0	Rutting Total (in) (@ 50% reliability) 0.081 0.089 0.091 0.092 0.094 0.095 0.098	Rutting AC only(in) (@ 50%) reliability) 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018	Bottom-up Fatigue Cracking(%) (@ 50% reliability) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Top-down Fatigue Cracking(ft/mild (@ 50% reliability) 0.4 0.6 0.8 0.9 1.0 1.2 1.3 1.6	Thermal e) Cracking(ft/mile) (@ 50% reliability) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	IRI (in/mile) (@ 90% reliability) 71.1 88.90 89.0 89.2 89.3 89.4 89.6 89.8	Rutting Total (in) (@ 90% reliability) 0.121 0.138 0.131 0.133 0.135 0.137 0.139 0.139	Rutting AC only(in) (@ 90%) reliability) 0.031 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032	Bottom-up Fatigue Cracking(% (@ 80% reliability) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Top-down Fatigue () Cracking() (@ 80% reliability 22.7 29.3 32.5 35.1 37.8 40.6 43.4 48.5

https://paveapps.com/mea	apaa; × +												
e paveapps.com/me	apaapp2/ResultsAt	Rel.jsp?re	lcalcd=1									Ð	☆ _^
EAPA eminkutay			: 1131_St	a122-149	~	621/0	The di	RES	SULTS	sirod	l rolia	bility	, sailt k
Detail	calcul	ated	l in fe	evels ew se	cond	s (no	need to	o re-run	the a	inaly	sis)	aonity	VVIII K
nent Profile		Distre	ss			Threshold		Reliability	Distr	ess Compu	ted @ 20.0	year(s) F	ass/Fail
		IRI (in	/mile)			172.0	9	90	142.5			F	ASS
ass Distributions		AC To	p-Down Fati	gue Crackin	g (ft/mile)	2000.0	7	80	1930	.9		F	ASS
		AC Bo	ttom-up Fati	igue Crackin	g (%)	25.0		75	1.0			F	ASS
ds <		AC Th	ermal Crack	ing (ft/mile)		1000.0		80	141.4			F	ASS
		Total F	Rutting (in)			0.75		90	0.34			F	ASS
ed Coefficients		AC Ru	tting (in)			0.25		90	0.2			F	ASS
		AC Re	flective Crac	kina (%)		25.0		90	0.0			F	ASS
Data <													
,		D	Istresse	is.									:
9 *		Montl	IRI (in/mile) (@ 50% n reliability)	Rutting Total (in) (@ 50%) reliability)	Rutting AC only(in) (@ 50% reliability)	Bottom-up Fatigue Cracking(%) (@ 50% reliability)	Top-down Fatigue Cracking(ft/mil (@ 50% reliability)	Thermal e) Cracking(ft/mile) (@ 50% reliability)	IRI (in/mile) (@ 90% reliability)	Rutting Total (in) (@ 90% reliability)	Rutting AC only(in) (@ 90% reliability)	Bottom-up Fatigue Cracking(% (@ 80% reliability)	Top-down Fatigue) Cracking(fi (@ 80% reliability)
		1	63.0	0.081	0.018	0.0	0.4	0.0	71.1	0.121	0.031	1.0	22.7
		2	66.5	0.087	0.018	0.0	0.6	0.0	88.9	0.128	0.032	1.0	29.3
		3	66.6	0.089	0.018	0.0	0.8	0.0	89.0	0.131	0.032	1.0	32.5
		4	66.7	0.091	0.018	0.0	0.9	0.0	89.2	0.133	0.032	1.0	35.1
		5	66.8	0.092	0.018	0.0	1.0	0.0	89.3	0.135	0.032	1.0	37.8
		6	66.9	0.094	0.018	0.0	1.2	0.0	89.4	0.137	0.032	1.0	40.6
		7	67.0	0.095	0.018	0.0	1.3	0.0	89.6	0.139	0.032	1.0	43.4
		8	67.1	0.098	0.019	0.0	1.6	0.0	89.8	0.142	0.032	1.0	48.5
		0	1.7.0	0.104	0.024	0.0		0.0	un 2	0.15	0.04	10	62.2

• ° ° ° • • • ° ° ° • • • • • • • • • • • • • • • • • • •															
MEAPA memolouluy E ROJECT: H31SH72:49 × RESULTS Results Participation Project Detail Project	\leftarrow \rightarrow C $($ a paveapps.com/meapaapp2/Resu	ultsAtRel.	.jsp?relcalc	:d=1									(Ð 🕁 🚾 (0
Policic Detail Provinit	MEAPA ≡ PRO meminkutay	JECT :	1131_Sta1	22-149 ~					RE	SULTS					Save
Perment Profile Intrast Trasthold Relability Distress Computed Q 2.0 year() Pear(A) Variable Class Distributions Alse Leads Alse Le	🔚 Project Detail	F	eliabilit}	/ and Te	rminal I	Distresse	15								
• Vehicle Class Distributions Image: 100 minimized processing (formine) 172 0 0 minimized processing (formine) 1930 0 1930 0 1930 0 1935 0 • Add Loads • Add anced Coefficients 4 Composition (formine) 100 0 80 1930 0 0.34 1935 0 • Add anced Coefficients • Composition (formine) 100 0 80 101 0 0.34 1935 0 • Add anced Coefficients • Composition (formine) 102 0 80 0.34 1935 0 • Composition (formine) 102 0 100 0.24 1935 0 1935 0 • Composition (formine) 102 0 103 0.02 104 1935 0 • Composition (formine) 1030 0 104 102 0 0.04 0.02 104 0 • Composition (formine) 102 0 103 0 104 0	Pavement Profile	Distr	ess			Tł	reshold	Reliability	v	D	istress Con	puted @ 20.0) vear(s)	Pass/Fail	
• Vehicle Class Distributions A.C Top-Down Fatigue Cracking (11/mle) 2000 80 1930.9 PAS • A to Loads • A to Loads • A to Loads • A to Loads • A to Second 90. 141.4 PAS • A to Loads • A to main Class Distributions • A to main Class Distributions 90. 141.4 PAS • A to Loads • A to main Class Distributions 0.28 90 0.2 PAS • A to block • A to the main Class Distributions 0.28 90 0.0 PAS • A to block • A to the main Class Distributions 0.0 PAS PAS • A to block • A to the main Class Distributions 0.0 0.0 PAS • A to block • B to the main Class Distributions 0.0 0.0 PAS • Download PDF Roport • B to the main Class Distributions Fatigue Class Distributions Fatigue Class Distributions Terminal Class Distributions Terminal Class Distributions • Download (JO Date • Download (JO Date • Download (JO Date • P To Down N to To Class Distributions Pas P To Class Distributio		IRI (ir	ı/mile)			17	2.0	90		1.	42.5		,	PASS	
Arde Loads A de Bettom-up Fatigue Cracking (%) 25.0 75 10 P PASS A dvanced Coefficients A dvanced Coefficients 0.0 80 14.4 PASS A nalyze 0.2 0.2 0.2 PASS PASS A nalyze 0.2 0.2 PASS PASS View Distresses Download (%) 0.2 0.2 PASS I full multing (%) Cracking (%) 25.0 90 0.2 PASS Download (%) Data Internet Cracking (%) 25.0 90 0.2 PASS Download (%) Data Internet Cracking (%) 25.0 90 0.2 PASS Download (%) Data Internet Cracking (%) Pass Pass Pass Download (%) Data Internet Cracking (%) Pass Pass Pass Pass Pass Pass Pass Pass	Vehicle Class Distributions	AC To	op-Down Fati	gue Crackin	g (ft/mile)	21	0.000	80		1	930.9			PASS	
A Charmed Coefficients A Charmed Coefficients A Charmed Cracking (frimin) 00000 80 141.4 PASS A Analyze 0.78 00 0.34 PASS A Charmed Coefficients 0.78 00 0.24 PASS A Charmed Cracking (frimin) 0.78 00 0.24 PASS A Charmed Cracking (frimin) 0.78 00 0.24 PASS A Charmed Cracking (frimin) 0.78 00 0.2 PASS A Charmed Cracking (frimin) 0.78 0.0 0.0 PASS B Citic Relability Distresses Distresses Distresses Pass Pass Download I/O Data Riting Riting Constant (frimin) Constant (frimin) Riting Constant (frimin) Riting Constant (frimin) Riting Riting<	Aula Laarla	AC B	ottom-up Fat	igue Crackir	ıg (%)	2!	5.0	75		1.	0			PASS	
Advanced Coefficients	Axie Loads <	AC T	nermal Crack	ing (ft/mile)		10	0000	80		1-	41.4			PASS	
A raty ze A c Rutting (m) 0.25 90 0.2 PASS A raty ze A c Rutting (m) 25.0 90 0.0 PASS A raty ze A c Rutting (m) 25.0 90 0.0 PASS A raty ze A c Rutting (m) 25.0 90 0.0 PASS A raty ze A c Rutting (m) Reflective Cracking (S) 25.0 90 0.0 PASS B c Rutting (m)	Advanced Coefficients	Total	Rutting (in)			0.	75	90		0	.34			PASS	
▲ Analyze Analyze A C Reflective Cracking (%) 25.0 90 0.0 PAS ▲ View Distresses Edit Reliability Edi		AC R	utting (in)			0.	25	90		0	.2			PASS	
Last Run Data View Distresses Edit Reliability	🖞 Analyze	AC R	aflective Crac	king (%)		2	5.0	90		0	.0			PASS	
Last Run Data • • Vew Distresses • • Download PDF Report • • Download I/O Data • • Help • • coout • • Click here to download the post of															
Image: Service	🛎 Last Run Data 🛛 🗸														
Image: Proper term Number te	 View Distresses Edit Reliability)istresse	S	Butting	Pottom-up	Top-down				Butting	Rottom-up	Ton-down	•	
Help edback or good in the same state	Download PDF Report Download I/O Data	Mont	IRI (in/mile) (@ 50% ch reliability'	Rutting Total (in) (@ 50% reliability	AC only(in) (@ 50% reliability	Fatigue Cracking(% (@ 50%) reliability)	Fatigue 5) Cracking(ft/mile (@ 50% reliability)	Thermal) Cracking(ft/mile) (@ 50% reliability)	IRI (in/mile) (@ 90% reliability)	Rutting Total (in) (@ 90% reliability)	AC only(in) (@ 90% reliability)	Fatigue Cracking(%) (@ 80% reliability)	Fatigue Cracking(ft/mile) (@ 80% reliability)	Thermal Cracking(ft/mile) (@ 80% reliability)	
Help 0.0 88.9 0.128 0.032 1.0 29.3 141.4 ecdback 0 89.0 0.131 0.032 1.0 32.5 141.4 ogout 0 89.0 0.131 0.032 1.0 32.5 141.4 0.0 69.2 0.133 0.032 1.0 32.5 141.4 0.0 69.2 0.133 0.032 1.0 37.8 141.4 0.0 69.3 0.135 0.032 1.0 37.8 141.4 0.0 69.3 0.135 0.032 1.0 40.6 141.4 0.0 69.3 0.135 0.032 1.0 40.6 141.4 0.0 69.3 0.135 0.032 1.0 48.5 141.4 1.1 67.7 0.095 0.018 0.0 1.3 0.0 89.8 0.132 0.032 1.0 48.5 141.4 10 68.5 0.131 0.046 0.0 2.7 0.0 90.2 1.0 48.5 141.4		1	63.0	0.081	0.018	0.0	0.4	0.0	71.1	0.121	0.031	1.0	22.7	141.4	
Hep 0.0 89.0 0.131 0.032 1.0 32.5 141.4 bedback 0.0 89.2 0.133 0.032 1.0 35.1 141.4 bggout 0 69.3 0.135 0.032 1.0 35.1 141.4 10 65.9 0.094 0.016 0.0 1.2 0.0 89.2 0.133 0.032 1.0 35.1 141.4 10 67.0 0.094 0.016 0.0 1.2 0.0 89.4 0.137 0.032 1.0 35.1 141.4 8 67.1 0.099 0.018 0.0 1.2 0.0 89.4 0.137 0.032 1.0 43.4 141.4 8 67.1 0.099 0.01 1.6 0.0 89.8 0.142 0.032 1.0 43.4 141.4 10 68.5 0.118 0.02 2.7 0.0 90.2 0.15 0.04 1.0 62.2 141.4 10 68.5 0.131 0.046 0.0 10.1 0.0					1	ad th	0	0.0	88.9	0.128	0.032	1.0	20.2		
becaback 0 0.03 0.04 0.032 1.0 0.032 1.0 38.1 141.4 becaback 0 0.03 0.135 0.032 1.0 0.032 1.0 141.4 becaback 0 0.09 0.135 0.032 1.0 0.032 1.0 141.4 becaback 7 67.0 0.095 0.018 0.0 1.2 0.0 89.4 0.137 0.032 1.0 40.6 141.4 7 67.0 0.095 0.018 0.0 1.3 0.0 89.8 0.142 0.032 1.0 43.4 141.4 8 67.1 0.098 0.019 0.0 1.6 0.0 89.8 0.142 0.032 1.0 48.5 141.4 9 67.4 0.104 0.024 0.0 2.7 0.0 90.2 0.15 0.04 1.0 62.2 141.4 10 68.0 0.138 0.0 1.01 0.0 91.9 0.182 0.073 1.0 100.8 141.4 1		k he	re to	dov	vnio	auu	e	0.0	00.0	0.101	0.000	1.0	20.5	141.4	
c 06 06.9 0.094 0.018 0.0 1.2 0.0 89.4 0.137 0.032 1.0 40.6 141.4 7 67.0 0.095 0.018 0.0 1.3 0.0 89.6 0.139 0.032 1.0 43.4 141.4 8 67.1 0.098 0.019 0.0 1.6 0.0 89.8 0.142 0.032 1.0 48.5 141.4 9 67.4 0.104 0.024 0.0 2.7 0.0 90.2 0.15 0.04 1.0 62.2 141.4 10 68.0 0.118 0.036 0.0 5.8 0.0 91.9 0.058 1.0 84.5 141.4 11 68.5 0.131 0.046 0.0 10.1 0.0 91.9 0.182 0.073 1.0 100.8 141.4 12 68.8 0.137 0.05 1.0 16.8 0.0 92.5 0.192 0.08 1.0 116.6 141.4 13 69.0 0.139 0.051		k he	re to	dov	vnio	auti	le	0.0	89.0 89.2	0.131	0.032	1.0	32.5	141.4 141.4 141.4	
Opport P 670 0.095 0.018 0.0 1.3 0.0 896 0.199 0.032 1.0 43.4 141.4 8 67.1 0.098 0.019 0.0 1.6 0.0 89.8 0.142 0.032 1.0 48.5 141.4 9 67.4 0.04 0.02 2.7 0.0 90.2 0.15 0.04 1.0 62.2 141.4 10 68.0 0.118 0.02 5.8 0.0 91.1 0.167 0.058 1.0 84.5 141.4 11 68.0 0.118 0.02 10.1 0.0 91.9 0.182 0.073 1.0 10.4 14.4 12 68.8 0.137 0.05 0.0 14.6 0.0 92.3 0.19 0.08 1.0 114.4 12 68.8 0.137 0.0 16.8 0.0 92.5 0.192 0.08 1.0 114.0 12	Help <	k he repo	re to <mark>ort</mark>	dov	vnio	au ti	le	0.0 0.0 0.0	89.0 89.2 89.3	0.131 0.133 0.135	0.032 0.032 0.032	1.0 1.0 1.0	32.5 35.1 37.8	141.4 141.4 141.4 141.4	
867.10.0980.090.01.60.089.80.1420.0321.048.5141.4967.40.040.020.02.70.090.20.150.041.062.2141.41068.00.1180.0360.05.80.091.10.1670.0581.084.5141.41168.00.1310.0460.010.10.091.90.1820.0731.010.4141.41268.80.3370.050.014.60.092.30.190.071.0111.6141.41369.00.390.0510.017.60.092.60.1930.081.010.6141.41469.00.190.160.092.60.1930.081.0116.0141.4	Help < Clicl	k he repo	re to ort	0.094	vnio			0.0 0.0 0.0 0.0	89.0 89.2 89.3 89.4	0.131 0.133 0.135 0.137	0.032 0.032 0.032 0.032	1.0 1.0 1.0 1.0	32.5 35.1 37.8 40.6	141.4 141.4 141.4 141.4 141.4	
9 67.4 0.04 0.024 0.0 2.7 0.0 90.2 0.15 0.04 1.0 62.2 141.4 10 68.0 0.118 0.036 0.0 5.8 0.00 91.1 0.167 0.058 1.0 84.5 141.4 11 68.5 0.131 0.046 0.0 10.1 0.0 91.9 0.182 0.073 1.0 84.5 141.4 12 68.8 0.137 0.05 0.0 14.6 0.0 92.3 0.19 0.073 1.0 111.6 141.4 13 69.0 0.139 0.051 0.0 16.8 0.0 92.5 0.192 0.08 1.0 141.4 14 69.0 0.13 0.051 0.0 17.6 0.0 92.6 0.193 0.08 1.0 114.4	Help < Clicl eedback @ pdf	k he repo ⁷	ore to	0.094 0.095	0.018 0.018	0.0 0.0	1.2 1.3	0.0 0.0 0.0 0.0 0.0 0.0	89.0 89.2 89.3 89.4 89.6	0.131 0.133 0.135 0.137 0.139	0.032 0.032 0.032 0.032 0.032	1.0 1.0 1.0 1.0 1.0	32.5 35.1 37.8 40.6 43.4	141.4 141.4 141.4 141.4 141.4 141.4 141.4	
10 68.0 0.118 0.036 0.0 5.8 0.0 91.1 0.167 0.058 1.0 84.5 141.4 11 68.5 0.131 0.046 0.0 10.1 0.0 91.9 0.182 0.073 1.0 100.8 141.4 12 68.8 0.137 0.05 0.0 14.6 0.0 92.3 0.19 0.079 1.0 111.6 141.4 13 69.0 0.139 0.051 0.0 16.8 0.0 92.5 0.192 0.08 1.0 116.0 141.4 14 69.0 0.139 0.051 0.0 16.8 0.0 92.5 0.192 0.08 1.0 116.0 141.4 14 69.0 0.139 0.051 17.6 0.0 92.6 0.193 0.08 1.0 116.0 141.4	Help < eedback @ ogout @	k he repo	re to	0.094 0.095 0.098	0.018 0.019	0.0 0.0	1.2 1.3 1.6	0.0 0.0 0.0 0.0 0.0 0.0 0.0	89.0 89.2 89.3 89.4 89.6 89.8	0.131 0.133 0.135 0.137 0.139 0.142	0.032 0.032 0.032 0.032 0.032 0.032	1.0 1.0 1.0 1.0 1.0 1.0	32.5 35.1 37.8 40.6 43.4 48.5	141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4	
11 68.5 0.131 0.046 0.0 10.1 0.0 91.9 0.182 0.073 1.0 100.8 141.4 12 68.8 0.137 0.05 0.0 14.6 0.0 92.3 0.19 0.079 1.0 111.6 141.4 13 69.0 0.139 0.051 0.0 16.8 0.0 92.5 0.192 0.08 1.0 116.0 141.4 14 69.0 0.14 0.051 0.0 17.6 0.0 92.6 0.193 0.08 1.0 116.0 141.4	I Help < Clicl eedback	k he repo	re to ort 67.0 67.1 67.4	0.094 0.095 0.098 0.104	0.018 0.018 0.019 0.024	0.0 0.0 0.0	1.2 1.3 1.6 2.7	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	89.0 89.2 89.3 89.4 89.6 89.8 90.2	0.131 0.133 0.135 0.137 0.139 0.142 0.15	0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	22.5 32.5 35.1 37.8 40.6 43.4 48.5 62.2	141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4	
12 05.6 0.157 0.05 0.0 14.6 0.0 92.5 0.19 0.079 1.0 111.6 141.4 13 69.0 0.139 0.051 0.0 16.8 0.0 92.5 0.192 0.08 1.0 116.0 141.4 14 69.0 0.14 0.051 0.0 17.6 0.0 92.6 0.193 0.08 1.0 117.5 141.4	I Help < Clicl eedback @ pdf	k he repo 7 8 9 10	re to ort 67.0 67.1 67.4 68.0	0.094 0.095 0.098 0.104 0.118	0.018 0.019 0.024 0.036	0.0 0.0 0.0 0.0 0.0	1.2 1.3 1.6 2.7 5.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	89.0 89.2 89.3 89.4 89.6 89.8 90.2 91.1	0.131 0.133 0.135 0.137 0.139 0.142 0.15 0.167	0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.04 0.058	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	23.5 32.5 35.1 37.8 40.6 43.4 48.5 62.2 84.5	141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4	
10 0.00 0.00 0.00 0.00 0.00 0.00 100 100 141.4 14 69.0 0.14 0.051 0.0 17.6 0.0 92.6 0.193 0.08 1.0 117.5 141.4	∎ Help 、 Clicl Feedback @ pdf	k he repo 7 8 9 10 11	67.0 67.1 67.4 68.0 68.5	0.094 0.095 0.098 0.104 0.118 0.131	0.018 0.018 0.019 0.024 0.036 0.046	0.0 0.0 0.0 0.0 0.0 0.0	1.2 1.3 1.6 2.7 5.8 10.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	89.0 89.2 89.3 89.4 89.6 89.8 90.2 91.1 91.9	0.131 0.133 0.135 0.137 0.139 0.142 0.15 0.167 0.182	0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.04 0.058 0.073	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	22.5 32.5 35.1 37.8 40.6 43.4 48.5 62.2 84.5 100.8	141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4	
	Help < Click reedback @ pdf	k he rept 7 8 9 10 11 12 13	re to ort 67.0 67.1 67.4 68.0 68.5 68.8 69.0	0.094 0.095 0.098 0.104 0.118 0.131 0.137 0.139	0.018 0.018 0.019 0.024 0.036 0.046 0.05 0.051	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.2 1.3 1.6 2.7 5.8 10.1 14.6 16.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	89.0 89.2 89.3 89.4 89.6 89.8 90.2 91.1 91.9 92.3 92.5	0.131 0.133 0.135 0.137 0.139 0.142 0.142 0.15 0.167 0.182 0.19 0.192	0.032 0.032 0.032 0.032 0.032 0.032 0.04 0.058 0.073 0.079 0.08	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	22.5 32.5 35.1 37.8 40.6 43.4 48.5 62.2 84.5 100.8 111.6 116.0	141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4	
	Help < Feedback Ø	k he rept 7 8 9 10 11 12 13 14	re to ort 67.0 67.1 67.4 68.0 68.5 68.5 68.5 68.0 69.0	0.094 0.095 0.098 0.104 0.118 0.131 0.137 0.139 0.14	0.018 0.018 0.019 0.024 0.036 0.046 0.05 0.051 0.051	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.2 1.3 1.6 2.7 5.8 10.1 14.6 16.8 17.6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	89.0 89.2 89.3 89.4 89.6 89.8 90.2 91.1 91.9 92.3 92.5 92.6	0.131 0.133 0.135 0.137 0.139 0.142 0.15 0.167 0.182 0.19 0.192 0.193	0.032 0.032 0.032 0.032 0.032 0.032 0.04 0.058 0.073 0.079 0.08 0.08	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	23.5 32.5 35.1 37.8 40.6 43.4 48.5 62.2 84.5 100.8 111.6 116.0 117.5	141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4	

•••	MEAPA_report_meminkutay_I131_St	a122-149_2020	-07-14 (4).pdf (pag	e 1 of 16) ~	
			1.		Search
W MEADA report					
* MEXPACIEDOIC					
and the second s					
berTTT1					
0					
-					
and the second sec					
			DA		
		MEP	IPA		
effinerity and a second second	Mechanistic	Empirical Asp	halt Pavement A	nalvsis	
				-	
2	D	etailed Ana	vsis Report		
			9010 110p 010		
-		Project: I131_	Sta122-149		
New York Concerning Co					
time to the t					
		User: men	ппкисау		
		Report created o	on: 2020-07-14		
	Applusic	run data/time: 0	7/14/2020 31 05:44	DM	
	Anatysis	run uace/cime. o	//14/2020 at 05.44	-141	
3					
		Distress S	ummarv		
			Target	Distance @ 20.0	Pass
	Distress	Threshold	Reliability	year(s)	/Fail
	IRI (in/mile)	172.0	90.0%	142.5	PASS
	AC Top-Down Fatigue Cracking (ft/mile)	2000.0	80.0%	1930.9	PASS
	AC Bottom-up Fatigue Cracking (%)	25.0	80.0%	1.0	PASS
4	AC Thermal Cracking (ft/mile)	1000.0	80.0%	141.4	PASS
	Total Rutting (in)	0.75	90.0%	0.34	PASS
	AC Rutting (in)	0.25	90.0%	0.2	PASS
	AC Reflective Cracking (%)	25.0	90.0%	0.0	N/A
than herein					
1 and					
5					
National Street					
AND TO A DECISION OF A DECISIONO OF A					
THEOTIC					
1 m					

	← → C	aapp2/ResultsAtRel.j	sp?relcalo	:d=1										Q \$	6
	MEAPA ≡ meminkutay	PROJECT :	l131_Sta	22-149 ~						RES	JLTS				
	Troject Detail		Reliabili	ty and Te	rminal Di	stresses									
	📚 Pavement Profile	Dist	ress			т	hreshold	Reliabi	lity		Distress 0	Computed @ 20.	0 vear(s)	Pass/Fail	
_	Nahicla Class Distributions	IRI (i	n/mile)			1	72.0	90			142.5			PASS	
		AC 1	op-Down Fa	tigue Crackin	g (ft/mile)	2	2000.0	80			1930.9			PASS	
	🛕 Axle Loads 🛛 🔍	AC E	bermal Cra	stigue Crackin sking (ft/mile)	ig (76)	2	15.0	80			1.0			PASS	
_		Tota	Rutting (in)	, and the second		0	0.75	90			0.34			PASS	
_	Advanced Coefficients	AC F	lutting (in)			0	0.25	90			0.2			PASS	
	🐸 Analyze	AC F	teflective Cr	acking (%)		2	15.0	90			0.0			PASS	
	In Last Due Date														
	E Last Run Data 🔍														
	🗠 View Distresses														
		1	Distress	es											
	Edit Kenability					Bottom-up						Bottom-up	Top-down		
	Download PDF Report		IRI (in/mile)	Rutting Total (in)	Rutting AC	Fatigue Cracking(%)	Top-down Fatigue	Thermal	IRI (in/mile)	Rutting Total (in)	Rutting AC	Fatigue	Fatigue Cracking(ft/mile)	Thermal Cracking(ft/mile	
			(@ 50%	(@ 50%	50%	(@ 50%	(@ 50%	(@ 50%	(@ 90%	(@ 90%	90%	(@ 80%	(@ 80%	(@ 80%	
	🛓 Download I/O Data	Mon	th reliabilit	y) reliability) 0.081	0.018	reliability)	reliability)	reliability)	71.1	0.121	reliability)	reliability)	reliability)	reliability)	
		2	66.5	0.087	0.018	0.0	0.6	0.0	88.9	0.128	0.032	1.0	29.3	141.4	
	E Help <	3	66.6	0.089	0.018	0.0	0.8	0.0	89.0	0.131	0.032	1.0	32.5	141.4	
		4	66.7	0.091	0.018	0.0	0.9	0.0	89.2	0.133	0.032	1.0	35.1	141.4	
	Feedback 🚱	6	66.9	0.092	0.018	0.0	1.2	0.0	89.4	0.135	0.032	1.0	40.6	141.4	
		7	67.0	0.095	0.018	0.0	1.3	0.0	89.6	0.139	0.032	1.0	43.4	141.4	
ra ta viavu tha d	istrass	8	67.1	0.098	0.019	0.0	1.6	0.0	89.8	0.142	0.032	1.0	48.5	141.4	
re to view the d	ISLIESS	9	67.4	0.104	0.024	0.0	5.8	0.0	90.2	0.167	0.058	1.0	62.2 84.5	141.4	
		11	68.5	0.131	0.046	0.0	10.1	0.0	91.9	0.182	0.073	1.0	100.8	141.4	
		12	68.8	0.137	0.05	0.0	14.6	0.0	92.3	0.19	0.079	1.0	111.6	141.4	
		13	69.0	0.139	0.051	0.0	16.8	0.0	92.5	0.192	0.08	1.0	116.0	141.4	
		15	69.1	0.14	0.051	0.0	18.1	0.0	92.7	0.193	0.08	1.0	118.2	141.4	
		16	69.2	0.14	0.051	0.0	18.4	0.0	92.8	0.194	0.08	1.0	118.8	141.4	
		17	69.2	0.141	0.051	0.0	18.8	0.0	92.9	0.194	0.08	1.0	119.5	141.4	
_		18	69.3	0.141	0.051	0.0	19.5	0.0	93.0	0.194	0.08	1.0	120.1	141.4	
		20	69.4	0.142	0.051	0.0	20.3	0.0	93.2	0.195	0.08	1.0	122.1	141.4	
		21	69.6	0.144	0.052	0.0	22.9	0.0	93.4	0.198	0.082	1.0	126.1	141.4	
		22	69.8	0.148	0.055	0.0	29.0	0.0	93.7	0.203	0.086	1.0	134.9	141.4	
		23	70.3	0.154	0.062	0.0	43.6	0.0	94.5	0.211	0.095	1.0	152.9	141.4	
		25	70.4	0.159	0.062	0.0	46.9	0.0	94.6	0.216	0.097	1.0	156.8	141.4	
		26	70.5	0.159	0.062	0.0	48.1	0.0	94.7	0.217	0.097	1.0	158.2	141.4	
		27	70.6	0.159	0.062	0.0	48.8	0.0	94.9	0.217	0.097	1.0	158.9	141.4	
		20	70.0	0.10	0.002	0.0	49.8	0.0	95.1	0.217	0.097	1.0	160.1	141.4	
		29	/0./	0.10	0.062	0.0									

	^ T												
\leftrightarrow \rightarrow C $($ paveapps.com/meapage	app2/ResultsAtRe	l.jsp?relca	lcd=1										छ 🕁 🔼 🤅
MEAPA =	PROJECT :	1131_Sta	a122-149 ~					RE	SULTS	8			
🚏 Project Detail		Reliabili	ty and Te	erminal	Distresse	is							
Pavement Profile	Dist	ress			ті	nreshold	Reliabilit	у	[Distress Cor	nputed @ 20.	D year(s)	Pass/Fail
	IRI (in/mile)			15	72.0	90		1	42.5			PASS
Vehicle Class Distributions	AC 1	fop-Down Fa	tigue Crackir	ng (ft/mile)	2	000.0	80		1	1930.9			PASS
	AC I	3ottom-up F	atigue Cracki	ng (%)	2	5.0	75		1	1.0			PASS
Axie Loads <	AC 1	fhermal Cra	king (ft/mile)		10	0.000	80		1	141.4			PASS
Advanced Coefficients	Tota	I Rutting (in)			0	.75	90		(0.34			PASS
	AC I	Rutting (in)			0	.25	90		C	0.2			PASS
🔟 Analyze	AC I	Reflective Cr	acking (%)		2	5.0	90		(0.0			PASS
🗆 Last Run Data 🛛 🗸													
 View Distresses Edit Reliability 		Distress	es										•
				Rutting	Rottom-up	The second second							
 Download PDF Report Download I/O Data 	Mor	IRI (in/mile) (@ 50% 1th reliabilit	Rutting Total (in) (@ 50% y) reliability	AC only(in) (@ 50%) reliability	Fatigue Cracking(% (@ 50% r) reliability)	Fatigue Fatigue 6) Cracking(ft/mile) (@ 50% reliability)	Thermal Cracking(ft/mile) (@ 50% reliability)	IRI) (in/mile) (@ 90% reliability	Rutting Total (in) (@ 90% reliability	AC only(in) (@ 90%) reliability)	Bottom-up Fatigue Cracking(%) (@ 80% reliability)	Top-down Fatigue Cracking(ft/mile) (@ 80% reliability)	Thermal Cracking(ft/mile) (@ 80% reliability)
 Download PDF Report Download I/O Data 	Mor 1	IRI (in/mile) (@ 50% Ith reliabilit	Rutting Total (in) (@ 50% y) reliability 0.081	AC only(in) (@ 50%) reliability 0.018	Fatigue Cracking(% (@ 50% reliability) 0.0	Fatigue 6) Cracking(ft/mile) (@ 50% reliability) 0.4	Thermal Cracking(ft/mile) (@ 50% reliability) 0.0	IRI) (in/mile) (@ 90% reliability 71.1	Rutting Total (in) (@ 90%) reliability 0.121	AC only(in) (@ 90%) reliability) 0.031	Bottom-up Fatigue Cracking(%) (@ 80% reliability) 1.0	Top-down Fatigue Cracking(ft/mile) (@ 80% reliability) 22.7	Thermal Cracking(ft/mile) (@ 80% reliability) 141.4
 Download PDF Report Download I/O Data 	Mor 1 2	IRI (in/mile) (@ 50% tth reliabilit 63.0 66.5	Rutting Total (in) (@ 50% y) reliability 0.081 0.087	AC only(in) (@ 50%) reliability 0.018 0.018	Fatigue Cracking(% (@ 50% r) reliability) 0.0 0.0	Fatigue 6) Cracking(ft/mile) (@ 50% reliability) 0.4 0.6	Thermal Cracking(ft/mile) (@ 50% reliability) 0.0 0.0	IRI (in/mile) (@ 90% reliability 71.1 88.9	Rutting Total (in) (@ 90% reliability 0.121 0.128	AC only(in) (@ 90%)) reliability) 0.031 0.032	Bottom-up Fatigue Cracking(%) (@ 80% reliability) 1.0 1.0	Top-down Fatigue Cracking(ft/mile) (@ 80% reliability) 22.7 29.3	Thermal Cracking(ft/mile) (@ 80% reliability) 141.4 141.4
 Download PDF Report Download I/O Data Help 	Mor 1 2 3	IRI (in/mile) (@ 50% reliabilit 63.0 66.5 66.6	Rutting Total (in) (@ 50% y) reliability 0.081 0.087 0.089	AC only(in) (@ 50%)) reliability 0.018 0.018 0.018	Fatigue Cracking(% (@ 50% reliability) 0.0 0.0 0.0	Fatigue 6 Cracking(ft/mile) (@ 50% reliability) 0.4 0.6 0.8	Thermal Cracking(ft/mile) (@ 50% reliability) 0.0 0.0 0.0	IRI (in/mile) (@ 90% reliability 71.1 88.9 89.0	Rutting Total (in) (@ 90%) reliability 0.121 0.128 0.131	AC only(in) (@ 90%) reliability) 0.031 0.032 0.032	Bottom-up Fatigue Cracking(%) (@ 80% reliability) 1.0 1.0 1.0	Top-down Fatigue Cracking(ft/mile) (@ 80% reliability) 22.7 29.3 32.5 35.1	Thermal Cracking(ft/mile) (@ 80% reliability) 141.4 141.4 141.4 141.4
Download PDF Report Download I/O Data Help	lick here	IRI (in/mile; (@ 50%) the reliabiliti 63.0 66.5 66.6	Rutting Total (in) (© 50% y) reliability 0.081 0.087 0.089	AC only(in) (@ 50%) reliability 0.018 0.018 0.018	Fatigue Cracking(% (@ 50% r) reliability) 0.0 0.0 0.0 0.0	Fatigue Cracking(ft/mile) (© 50% reliability) 0.4 0.6 0.8	Thermal 0 Cracking(ft/mile) (@ 50% reliability) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	RI (@ 90% reliability 71.1 88.9 89.0 89.2 89.3	Rutting Total (in) (@ 90%) reliability 0.121 0.128 0.131 0.133 0.135	AC only(in) (@ 90%) reliability) 0.031 0.032 0.032 0.032	Bottom-up Fatigue Cracking(%) (@ 80% reliability) 1.0 1.0 1.0 1.0	Top-down Fatigue Cracking(ft/mile) (@ 80% reliability) 22.7 29.3 32.5 35.1 37.8	Thermal Cracking(ft/mile) (@ 80% reliability) 141.4 141.4 141.4 141.4 141.4 141.4
Download PDF Report Download I/O Data Help	lick here	IRI (in/mile, (@ 50%) reliabilit 63.0 66.5 66.6 2 to (Rutting Total (in) (@ 50%) y) reliability 0.081 0.087 0.089	AC only(in) (@ 50%) reliability 0.018 0.018 0.018	Cracking(% (@ 50%)) reliability) 0.0 0.0 0.0 d the	Fatigue 5) Cracking(ft/mile) (@ 50% reliability) 0.4 0.6 0.8	Thermal Cracking(ft/mile) (@ 50% reliability) 0.0 0.0 0.0 0.0 0.0 0.0	RI (@ 90%) reliability 71.1 88.9 89.0 89.2 89.3 89.4	Rutting Total (in) (@ 90%) reliability 0.121 0.128 0.131 0.133 0.135 0.137	AC only(in) (@ 90%) reliability) 0.031 0.032 0.032 0.032 0.032 0.032	Bottom-up Fatigue Cracking(%) (@ 80% reliability) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Top-down Fatigue Cracking(ft/mile) (@ 80% reliability) 22.7 29.3 32.5 35.1 37.8 40.6	Thermal Cracking(ft/mile) (@ 80% reliability) 141.4 141.4 141.4 141.4 141.4 141.4 141.4
Download PDF Report Download I/O Data Help edback	lick here	IRI (in/mile (@ 50%) reliabilit 66.5 66.6 2 to (t/ou	Rutting Total (in) (@ 50%) y) reliability 0.081 0.087 0.089 0.089	AC only(in) (@ 50%) reliability 0.018 0.018 0.018	Cracking(% Cracking(% (@ 50%)) reliability) 0.0 0.0 0.0 0.0 0.0	Fatigue Satigue (@ 50% reliability) 0.4 0.6 0.8	Thermal Cracking(ft/mile) (@ 50%) reliability) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	IRI (in/mile) (@ 90%) reliability 71.1 88.9 89.0 89.2 89.3 89.4 89.6	Rutting Total (in) (@ 90%) 0.121 0.128 0.131 0.133 0.135 0.137 0.139	AC only(in) (@ 90%)) reliability) 0.031 0.032 0.032 0.032 0.032 0.032 0.032	Bottom-up Fatigue Cracking(%) (@ 80% reliability) 1.0 1.0 1.0 1.0 1.0 1.0	Top-down Fatigue Cracking(ft/mile) (@ 80% reliability) 22.7 29.3 25.5 35.1 37.8 40.6 43.4	Thermal Cracking(ft/mile) (@ 80% reliability) 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4
Download PDF Report	lick here	IRI (in/mile (@ 50%) th reliabilit 63.0 66.5 66.6 2 to (t/ou	Rutting Total (in) (@ 50%) preliability 0.081 0.087 0.089 0.089	AC only(in) (© 50%) reliability 0.018 0.018 0.018 0.018 0.018	Cracking(% (@ 50% () reliability) 0.0 0.0 0.0 0.0 d the	103-20041 Fatigue 6) Cracking(ft/mile) (@ 50% reflability) 0.4 0.6 0.8	Thermal Cracking(ft/mile) (@ 50% reliability) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	IRI (m/mile) (@ 90%) reliability 71.1 88.9 89.0 89.2 89.3 89.4 89.6 89.8	Rutting Total (in) (ie) 90% ollability 0.121 0.128 0.131 0.133 0.135 0.137 0.139 0.142	AC only(in) (@ 90%)) reliability) 0.031 0.032 0.032 0.032 0.032 0.032 0.032 0.032	Bottom-up Fatigue Cracking(%) (@ 80% reliability) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Top-down Fatigue Fatigue Cracking(ft/mile) Cracking(ft/mile) (@ 80% reliability 22.7 29.3 35.1 37.8 40.6 43.4 48.5	Hermal Cracking(ft/mile) (@ 80%) reliability) 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4
Download PDF Report	lick here	IRI (in/mile (© 50%) 66.5 66.6 2 to (t/our) 67.4	Rutting Total (in) (@ 50% y) reliability 0.081 0.087 0.089 0.0990 0.099 0.0990 0.0990 0.00	AC only(in) (@ 50%) reliability 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018	Bitigue Fatigue Cracking(% (@ 50% () reliability) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2.7	Thermal Cracking(ft/mile) (@ 50% reliability) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	RI (in/mile) (@ 90%) reliability 71.1 88.9 89.0 89.2 89.3 89.4 89.4 89.6 89.6 89.8 89.8 89.8 89.8 89.8	Rutting Total (in) (@ 90%) reliability 0.121 0.128 0.131 0.133 0.135 0.137 0.139 0.139 0.142 0.139 0.139 0.139 0.142	AC only (in) (@ 90%)) reliability) 0.031 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032	Bottom-up Fatigue Cracking(%) (@ 80% reliability) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Top-down Fatigue Cracking(ft/mile) (@ 80% 22.7 29.3 22.5 35.1 37.8 40.6 43.4 43.5 62.2	Thermal Cracking(ft/mile) (@ 80% reliability) 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4
Download PDF Report	lick here	IRI (in/mile (iso) (in/mile (iso) (i	Rutting Total (in) (50% y) reliability 0.081 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.080 0.081 0.080	AC only(in) (© 50%) reliability 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018	abit(a) abit(a) <t< td=""><td>2.7 5.8 5.8 2.7 2.7 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8</td><td>Thermal 0racking(ft/mile) (@ 50% reliability) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td><td>RI (in/mile) (@ 90%) reliability 71.1 88.9 89.0 89.2 89.3 89.4 89.4 89.6 89.8 90.2 91.1 90.2</td><td>Rutting Total (in) (@ 90% reliability 0.121 0.128 0.131 0.133 0.135 0.137 0.139 0.142 0.15 0.167</td><td>AC only(in) (@ 90%)) reliability) 0.031 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032</td><td>Bottom-up Fatigue Cracking(%) (@ 80% reliability) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0</td><td>Top-down Fatigue Cracking(ft/mile) (@ 80% 22.7 29.3 32.5 35.1 35.1 40.6 43.4 43.4 43.5 62.2 84.5 50.0</td><td>Thermal Cracking(ft/mile) (@ 80% reliability) 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4</td></t<>	2.7 5.8 5.8 2.7 2.7 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8	Thermal 0racking(ft/mile) (@ 50% reliability) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	RI (in/mile) (@ 90%) reliability 71.1 88.9 89.0 89.2 89.3 89.4 89.4 89.6 89.8 90.2 91.1 90.2	Rutting Total (in) (@ 90% reliability 0.121 0.128 0.131 0.133 0.135 0.137 0.139 0.142 0.15 0.167	AC only(in) (@ 90%)) reliability) 0.031 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032	Bottom-up Fatigue Cracking(%) (@ 80% reliability) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Top-down Fatigue Cracking(ft/mile) (@ 80% 22.7 29.3 32.5 35.1 35.1 40.6 43.4 43.4 43.5 62.2 84.5 50.0	Thermal Cracking(ft/mile) (@ 80% reliability) 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4 141.4
Download PDF Report	lick here	IRI (in/mile (0.50%) (in/mile (0.50%) (Rutting Total (in) (50% y) reliability 0.081 0.087 0.089 0.089 0.089 0.089 0.089 0.081 0.081 0.081 0.081 0.010 0.118 0.118	AC only(in) (@ 50%)) reliability 0.018 0.018 0.018 0.018 0.018 0.018 0.024 0.024 0.024 0.036	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	103-200ml Faligue Faligue (% 50% (% 50% (% 50% 0.4 0.6 0.8 (% 50% 2.7 5.8 10.1 4.4	Thermal Cracking(ft/mile) (@ 50% reliability) 0.0	IRI (in/mile) (ie) 90% reliability 71.1 88.9 89.0 89.2 89.3 89.4 89.6 90.2 91.1 90.2 90.2	Rutting (@ 90%) reliability 0.121 0.128 0.131 0.133 0.135 0.137 0.137 0.137 0.137 0.137 0.137 0.137 0.139 0.142 0.15 0.167 0.182	AC only(in) (@ 90%) reliability) 0.031 0.032 0.04 0.058 0.032 0.032 0.032 0.058 0.032 0.032 0.032 0.04 0.058 0.032 0	Bottom-up Fatigue Cracking(%) (@ 80% (@ 80% 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Top-down Fatigue Fatigue (@ 80% (@ 80% 22.7 29.3 32.5 35.1 35.1 40.6 43.4 43.5 43.5 43.5 43.5 43.5 43.5 43.5	Iternal Cracking(tt/mile) (@ 80%) reliability) 141.4
Download PDF Report Download I/O Data Help eedback	lick here	IRI (in/mile))) (in/mile (in/m	Rutting Total (in) (@ 50%) 9) reliability 0.081 0.087 0.089 COMP	AC only(in) (@ 50%)) reliability 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.024 0.024 0.024 0.036 0.046 0.051	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	103-200ml Faligue Faligue (% 50% (% 50% (% 50% 0.4 0.6 0.8 (% 50% 2.7 5.8 10.1 14.6 146.9 156.8	Thermal Cracking(ft/mile) (@ 50% reliability) 0.0	IRI (in/mile) (ie) 90% reliability 71.1 88.9 89.0 89.2 89.3 89.4 89.6 90.2 91.1 91.9 92.3	Rutting (@ 90%) reliability 0.121 0.128 0.131 0.133 0.135 0.137 0.137 0.137 0.137 0.137 0.137 0.137 0.132 0.142 0.15 0.167 0.182	AC only(in) (@ 90%) reliability) 0.031 0.032 0.04 0.058 0.073 0.058 0	Bottom-up Fatigue Cracking(%) (@ 80% (@ 80% 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Top-down Fatigue Cracking(ft/mile) (@ 80% reliability) 22.7 29.3 32.5 35.1 35.1 40.6 43.4 43.6 43.4 48.5 62.2 84.5 100.8 111.6	Iternal Iternal Cracking(tt/mile) (@ 80%) Iternal 141.4 Iternal
 Download PDF Report Download I/O Data Help Feedback Logout Tage 	lick here	IRI (in/mile))) (in/mile (in/m	Rutting Total (in) (© 50% y) reliability 0.081 0.087 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.081 0	AC only(in) (@ 50%) only(in) (@ 50%) only(in) only((in) only(in) only((in) only((in) o	atigue Fatigue Cracking(% (% 50%) atigue 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	103-200401 Faligue 0. Cracking(f/mile) (@ 50% verilability) 0.4 0.6 0.8 2.7 2.8 10.1 14.6 16.8 17.6	Thermal Cracking(ft/mile) (@ 50% reliability) 0.0	RI (in/mile) (© 90%) reliability 88.9 89.0 89.2 89.3 89.4 89.6 9.8 9.6 9.8 9.0 9.1 91.1 91.9 92.3 92.5	Rutting Total (in) (@ 90%) reliability 0.121 0.128 0.131 0.133 0.137 0.137 0.137 0.139 0.139 0.142 0.15 0.167 0.182 0.19 0.192	AC only (in) (@ 90%) reliability) 0.031 0.032	Bottom-up Fatigue Cracking(%) (@ 80% 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Top-down Fatigue Cracking(ft/mile) (@ 80% reliability) 22.7 29.3 32.5 35.1 35.1 40.6 43.4 43.4 48.5 62.2 43.4 48.5 100.8 111.6 111.6 112.5	Thermal Cracking(tt/mile) (@ 80%) reliability) 141.4 141.4 141.4 141.4

•••	meapa		
	Q Search		
Name	A Date Modified	Size	Kind
webtempdata1811024938336143508	Today at 5:57 PM		Folder
► Clim_inout	Today at 5:56 PM		Folder
▶ DamageResp	Today at 5:56 PM		Folder
▶ Inputs	Today at 5:56 PM		Folder
▶ EEAinps	Today at 5:56 PM		Folder
RMEPDG_AC_jsonjarc2.json	Today at 5:49 PM	91 KB	JSON
► StructResp_120_3	Today at 5:56 PM		Folder
► StructResp_240_3	Today at 5:56 PM		Folder

Unzip the raw input/output data to see subfolders...

📓 Macintosh F

There are many text files, most of the parameters are self-explanatory (from the file name). Please ask for the others using the MEAPA Feedback Form

C preveapps.com/meapapp2/Analyze.jpp MEAPA mem/hkutay ect Detail mem Profile Loads Loads noced Coefficients yze Rin Data vze Rin Data Click here to optimize thickness of a layer Download JSON 	C provedpressure/measapap2/Analyze.jsp MEAPA meminkutay roject Detail vement Profile whicle Class Distributions de Loads vanced Coefficients alyze st Run Date vanced Coefficients alyze st Run Date Click here to optimize thickness of a layer Distress save priod (months) 240.0 Structural response Save priod (months) Distress save priod (months) Soverboard JSON			thtps://paveapps.com/meapae: x +		
MEAPA meminkutay eet Detail ment Profile icle Class Distributions Loads rede Coefficients yze Run Data co co Download JSON ANALYZE ANALYZE Analysis run settings Click here to optimize thickness of a layer Distress save 10 Units and the period (months): Structural response Save period (months) Download JSON	MEAPA meminikutay roject Detail wameet Profile whicle Class Distributions te Loads vanced Coefficients alyze st Run Data Deminiand JSON Click here to optimize thickness of a layer Deminiand JSON	MEAPA reminkulary Project Detail Pavement Profile Vehicle Class Distributions Analyzis Loadis Analyzis Distress save period (months): Structural response Zdu0.0 Click here to optimize thickness of a layer Click here to optimize thickness of a layer Distress save period (months): Structural response Zdu0.0 Structural response Structural response Zdu0.0 Structural response Structu	MEAPA reminuturbuy Project Ditall wenend Profile wenend So Distributions wie Loads dvanced Coefficients nalyze ast Run Data Obvinied JBON Obvinied JBON	→ C		Ð
ect Detail menet Profile Loads mede Coefficients yze Run Data Click here to optimize thickness of a layer Click here to optimize thickness of a layer Distress save 240.0 (months) 240.0 Distress save 240.0 Distress save Distress save 240.0 Distress save Distress save 240.0 Distress save Distress save 240.0 Distress save Distress	roject Detail weenent Profile helca class Distributions ta Loads wanced Coefficients halyze st Run Data ta Coefficients halyze ta Run Data ta Coefficients halyze ta Run Data ta Coefficients halyze ta Coefficients halyze ta Run Data ta Coefficients halyze ta Coefficients halyze halyze ta Coefficients halyze ta Coefficients halyze halyze ta Coefficients halyze ta Coefficients halyze halyze ta Coefficients halyze ta Coefficients halyze ta Coefficients halyze ta Coefficients halyze halyze halyze halyze hal	Project Detail Pavement Profile Vehicle Class Distributors Advanced Coefficients Analysis run settings Structural response 240.0 save period (months): 240.0 Download JSON Click here to optimize thickness of a layer Download JSON	Project Detail Verifiele Class Distribution vial codef vial code vial codef vial code	MEAPA	2-149 ~ ANALYZE	
icle Class Distributions Loads Coefficients yze Run Data Coefficients View Coeffic	ehicle Class Distributions Me Loads Nvanced Coefficients halyze st Run Data c period (months): Distress save period (months) Data Concentry Entry	Vehicle Class Distributions Atle Loads < C Advanced Coefficients Analyze Last Run Date < Download JSON Help < C Download JSON	Vehicle Class Distributions Veloads c dvanced Coefficients ast Run Data c conveload JSON Veloa ast Run Data c conveload JSON	Project Detail Pavement Profile Analysis run settings	Click here to optimize thickness	5
Run Data < Download JSON	ist Run Data < bownload JSON ack O t t	Last Run Data < Download JSON Help < Last Run Caller La	ast Run Data < Download JSON att	Vehicle Class Distributions Distress save period (months): 1.0 Axle Loads < Structural response save period (months) Advanced Coefficients (months)		
k Ø	ack 😧	iback 🕜	back <table-cell></table-cell>	Last Run Data < Download JSON		
				ack 😧		

A web-based pavement design app