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1. INTRODUCTION 

This document provides a description of the pavement performance prediction models 
implemented in MEAPA. The types of pavements that can currently be modeled are described 
below: 

• AC-GB = Asphalt Concrete over Gravel Base 
• AC-CSM = Asphalt Concrete over Chemically Stabilized Material 
• AC-E-AC-GB = Asphalt Concrete over Existing Asphalt Concrete over Gravel Base 
• AC-E-AC-CSM = Asphalt Concrete over Existing Asphalt Concrete over Chemically 

Stabilized Material 
• AC-GB-E-AC-GB = Asphalt Concrete over Gravel Base over Existing Asphalt Concrete 

over Gravel Base 
• AC-GB-E-AC-CSM = Asphalt Concrete over Gravel Base over Existing Asphalt Concrete 

over Chemically Stabilized Material 
 
Table 1 shows the different distresses computed for each of the pavements considered in 
MEAPA. There are five general analysis steps in MEAPA models: 

1. Traffic data processing.  
2. Climate data processing and running the mechanistic climatic model (MCLIM) to 

compute temperature with depth. 
3. Perform structural analysis to compute critical strains and stresses a mechanistic 

procedure.  
4. Use phenomenological Material Damage Models (MDMs) to compute theoretical failure 

condition corresponding to an analysis period for a given critical stress or strain.  
5. Compute accumulation of damage.  
6. Compute actual distresses using empirical transfer functions. 

Steps 1 and 2 are generally common to all of the pavement types. Steps 3 through 6 are 
implemented in different ways for different types of the pavements. Subsequent sections include 
the implementation details and the basic models used for each pavement type. 
 

Table 1. MEAPA distress outputs for different types of pavements 
Pavement type: 

 
 
Distress output 

AC-

GB 

AC-

CSM 

AC-

E-
AC-
GB 

AC-

E-
AC-
CSM 

AC-

GB-
E-
AC-
GB 

AC-

GB-
E-
AC-
CSM 

AC top-down fatigue cracking (ft/mile) ü ü ü ü ü ü 

AC bottom-up fatigue cracking (%) ü ü ü ü ü ü 

AC thermal cracking (ft/mile) ü ü ü ü ü ü 

Rutting – AC, base subbase and subgrade (in) ü ü ü ü ü ü 

Reflective cracking (% lane area) - ü ü ü(1) - - 

Chemically stabilized layer - fatigue fracture damage (% lane area) - ü - ü - - 

Existing AC layer - fatigue fracture damage (% lane area) - - ü ü - - 

International Roughness Index (IRI) (in/mile) ü ü ü ü ü ü 

Notes: (1) Reflective cracking is due to the existing asphalt layer, not CSM.  
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2. TRAFFIC DATA PROCESSING 

The main traffic inputs needed by the models are listed in Table 2. As shown, there are 19 
different scalar inputs and 11 vectors or matrices (e.g., axle load spectra). These inputs are 
essentially the same inputs in the NCHRP 1-37A Mechanistic Empirical Pavement Design Guide 
(MEPDG). One of the most important steps in traffic data processing is the computation of the 
actual number of single, tandem, tridem and quad axles per analysis period, per weight category. 
In other words, all the traffic inputs, such as axle load spectra, axles per truck, class distribution, 
growth…etc. are all converted into the following: 

• !!,#,$!
%!&'() =Number of single axles in month #, year $, corresponding to axle weight %* 

where & = 1…39 and %* = 3000, 4000,…41000 (lb). 

• !!,#,$!
#+&,)- =Number of tandem axles in month #, year $, corresponding to axle weight %* 

where & = 1…39 and %* = 6000, 8000,…82000 (lb). 

• !!,#,$!
#.!,)- =Number of tridem axles in month #, year $, corresponding to axle weight %* 

where & = 1…31 and %* = 12000, 15000,…102000 (lb). 

• !!,#,$!
/0+, =Number of quad axles in month #, year $, corresponding to axle weight %* 

where & = 1…31 and %* = 12000, 15000,…102000 (lb). 

 
The parameters listed above are used in damage accumulation models in different pavement 
types. The !!,#,$!

%!&'(), !!,#,$!
#+&,)-, !!,#,$!

#.!,)- and !!,#,$!
/0+,	are three-dimensional matrices that includes 

the number of single, tandem, tridem and quad axle applications in month i, year t, 
corresponding to axle weight %* in the k’th weight category. Computation of these matrices are 
described below. It is noted that the bolded variables are either vectors or matrices, whereas un-
bolded parameters are scalars.   
 

1. First, the number of trucks for each month for each class is calculated for year 1: 

!"",$,%&' = $$%&& ∗ (( ∗ () ∗ )*+",$ ∗ !"
* ∗ ,$

+	 	 	 [1]	

where ; 
!"",$,%&'	=	Number	of	trucks	for	each	month	@	(@ = 1…12),	for	each	FHWA	class	K	(K = 1…10)	for	year	1	
$$%&&	=	Annual	average	daily	truck	traffic	
((	 =	Percentage	of	trucks	in	design	direction	
()	 =	Percentage	of	trucks	in	design	lane	

)*+",$ =	Monthly	distribution	factor	for	each	month	@	(@ = 1…12),	for	each	FHWA	class	K	(K = 1…10)	
!"
*	 =	Number	of	days	in	a	given	month.	!"

* = [31,28,31,30,31,30,31, 31, 30, 31, 30, 31]	for	January	
through	December,	respectively.	

,$
+	 =	Percentage	of	trucks	for	a	given	class	FHWA	class	K	(K = 1…10).	It	is	noted	that	∑ ,$

+ = 100%10
.=1 	
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Table 2. MEAPA raw traffic inputs 

Input	Category	 Variable(1)	 Description	
G
en
er
al
	

AADTT	 Annual	average	daily	truck	traffic	
()	 Percentage	of	trucks	in	design	direction	
((	 Percentage	of	trucks	in	design	lane	
V	 Operational	speed	
a0	 Traffic	opening	year	
b0	 Traffic	opening	month	
a1	 Analysis	duration	
Sd	 Wheel	wander	standard	deviation	

A
xl
e	

co
nf
ig
ur
at
io
n	 f2	 Average	axle	width(2)	

g23	 Tandem	axle	spacing	
g24	 Tridem	axle	spacing	
g25	 Quad	axle	spacing	
g63	 Dual	tire	spacing	
(34	 Tire	pressure	

W
he
el
ba
se

(2
) 	 g72	 Average	spacing	of	short	axles	

g82	 Average	spacing	of	medium	axles	
g92	 Average	spacing	of	long	axles	
(72	 Percent	trucks	with	short	axles	
(82	 Percent	trucks	with	medium	axles	
(92	 Percent	trucks	with	long	axles	

V
eh
ic
le
	

Cl
as
s,
	

G
ro
w
th
	&
	

M
on
th
ly
	

D
is
tr
ib
ut
io
n	 ,$

+	 Percentage	of	vehicles	in	a	given	FHWA	class	K	

j$
+	 Compound	growth	rate	for	a	given	FHWA	class	K	

)*+"$	 Monthly	distribution	factor	for	each	month	@	for	each	FHWA	class	K		

N
um

be
r	
of
	a
xl
es
	

pe
r	
FH
W
A
	c
la
ss
	

!k$
:";<=>	 Number	of	single	axles	per	FHWA	class	K	

!k$
%?;*>@	 Number	of	tandem	axles	per	FHWA	class	K	

!k$
%A"*>@	 Number	of	tridem	axles	per	FHWA	class	K	

!k$
BC?*	 Number	of	quad	axles	per	FHWA	class	K	

A
xl
e	
Lo
ad
	S
pe
ct
ra
	

,",$,D!
:";<=>	

Percentage	of	single	axles	in	@3E	month	per	FHWA	class	K,	corresponding	to	
axle	weight	n!	where	o = 1…39	and	n! = 3000, 4000,…41000	(lb).	Note	
that	∑ (F,G,H"

7FIJ9K = 100%LM
N&O 	

,",$,D!
%?;*>@	

Percentage	of	tandem	axles	in	@3E	month	per	FHWA	class	K,	corresponding	to	
axle	weight	n!	where	o = 1…39	and	n! = 6000, 8000,…82000	(lb).	Note	
that		∑ (F,G,H"

31I6K8 = 100%LM
N&O 	

,",$,D!
%A"*>@	

Percentage	of	tridem	axles	in	@3E	month	per	FHWA	class	K,	corresponding	to	
axle	weight	n!	where	o = 1…31	and	n! = 12000, 15000,…102000	(lb).	
Note	that		∑ (F,G,H"

34F6K8 = 100%LO
N&O 	

,",$,D!
BC?*	

Percentage	of	quad	axles	in	@3E	month	per	FHWA	class	K,	corresponding	to	axle	
weight	n!	where	o = 1…31	and	n! = 12000, 15000,…102000	(lb).	Note	
that		∑ (F,G,H"

5P16 = 100%LO
N&O 	

Notes: (1) Subscript # represents each month, i.e.,  (# = 1…12). Subscript 6 represents each 
FHWA class, i.e., (6 = 1…10). (2) Only used in rigid pavement analysis. 
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Next, the number of single, tandem, tridem and quad axles are calculated for year 1, for each 
class for each month: 

!k",$,%&'
:";<=> = 	!"",$,%&' ∗ !k$

:";<=>		 	 	 	 	 [2]	

!k",$,%&'
%?;*>@ = 	!"",$,%&' ∗ !k$

%?;*>@		 	 	 	 [3]	

!k",$,%&'
%A"*>@ = 	!"",$,%&' ∗ !k$

%A"*>@		 	 	 	 	 [4]	

!k",$,%&'
BC?* = 	!"",$,%&' ∗ !k$

BC?*		 	 	 	 	 [5]	

where; 
!"",$,%&'	=	Number	of	trucks	for	each	FHWA	class	K	(K = 1…10),	for	each	month	@	(@ = 1…12),	for	year	1	

!k",$,%&'
:";<=>	=	Number	of	single	axles	in	an	FHWA	class	K	(K = 1…10),	for	each	month	@	(@ = 1…12),	for	year	1	

!k",$,%&'
%?;*>@	=	Number	of	tandem	axles	in	an	FHWA	class	K	(K = 1…10),	for	each	month	@	(@ = 1…12),	for	year	1	

!k",$,%&'
%A"*>@	=	Number	of	tridem	axles	in	an	FHWA	class	K	(K = 1…10),	for	each	month	@	(@ = 1…12),	for	year	1	

!k",$,%&'
BC?* 	=	Number	of	quad	axles	in	an	FHWA	class	K	(K = 1…10),	for	each	month	@	(@ = 1…12),	for	year	1	

!k$
:";<=>	=	Number	of	single	axles	per	FHWA	class	K	(K = 1…10)	

!k$
%?;*>@	=	Number	of	tandem	axles	per	FHWA	class	K	(K = 1…10)	

!k$
%A"*>@	=	Number	of	tridem	axles	per	FHWA	class	K	(K = 1…10)	

!k$
BC?*	 =	Number	of	quad	axles	per	FHWA	class	K	(K = 1…10)	

Next, the growth factor is computed for each year $. There are two options for growth of traffic; 
(i) compound and (ii) linear. If compound growth is assumed for a given truck class, the 
following equation is used to compute the growth factor: 

uvQ,R = (w + j$
+)(3TO)					 	 	 	 	 [6]	

where; 
uvQ,R	=	Growth	factor	at	time	t	(years)	for	an	FHWA	class	K	(K = 1…10)	
j$
+ =	Compound	growth	rate	for	an	FHWA	class	K	(K = 1…10),	in	terms	of	fractions,	i.e.,	for	10%	enter	0.1	
a =	Time	in	years,	a = 1… a1	where	a1	is	analysis	duration	

 
If linear growth is selected for a given class, the following equation is used to compute the 
growth factor: 
 

uvQ,R = (w + (a − 1)j$
+)						 	 	 	 [7]	

Then, the number of single, tandem, tridem and quad axles are calculated for each year $, for 
each month #,	for each class 6: 

!k",$,%
:";<=> = !k",$,%&'

:";<=> ∗ uvQ,R		 	 	 	 	 [8]	

!k",$,%
%?;*>@ = !k",$,%&'

%?;*>@ ∗ uvQ,R		 	 	 	 	 [9]	

!k",$,%
%A"*>@ = !k",$,%&'

%A"*>@ ∗ uvQ,R		 	 	 	 	 [10]	

!k",$,%
BC?* = !k",$,%&'

BC?* ∗ uvQ,R		 	 	 	 	 [11]	

where; 
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!k",$,%
:";<=>	=	Number	of	single	axles	in	an	FHWA	class	K	(K = 1…10),	for	each	month	@	(@ = 1…12),	for	year	a	

(a = 1… a1	where	a1	is	analysis	duration)	
!k",$,%

%?;*>@ =	Number	of	tandem	axles	in	an	FHWA	class	K	(K = 1…10),	for	each	month	@	(@ = 1…12),	for	year	a	
(a = 1… a1	where	a1	is	analysis	duration)	

!k",$,%
%A"*>@ =	Number	of	tridem	axles	in	an	FHWA	class	K	(K = 1…10),	for	each	month	@	(@ = 1…12),	for	year	a	

(a = 1… a1	where	a1	is	analysis	duration)	
!k",$,%

BC?* =	Number	of	quad	axles	in	an	FHWA	class	K	(K = 1…10),	for	each	month	@	(@ = 1…12),	for	year	a	
(a = 1… a1	where	a1	is	analysis	duration)	

 
Next, the number of axles corresponding to each axle weight category is computed: 

!k",$,%,D!
:";<=> = !k",$,%

:";<=> ∗ ,",$,D!
:";<=>		 	 	 	 	 [12]	

!k",$,%,D!
%?;*>@ = !k",$,%

%?;*>@ ∗ ,",$,D!
%?;*>@		 	 	 	 	 [13]	

!k",$,%,D!
%A"*>@ = !k",$,%

%A"*>@ ∗ ,",$,D!
%A"*>@		 	 	 	 	 [14]	

!k",$,%,D!
BC?* = !k",$,%

BC?* ∗ ,",$,D!
BC?*		 	 	 	 	 [15]	

where; 
!k",$,%,D!

:";<=> 	=	 Number	of	single	axles	in	an	FHWA	class	K	(K = 1…10),	for	each	month	@	(@ = 1…12),	for	year	a	
(a = 1… a1,	where	a1	Is	analysis	duration),	corresponding	to	axle	weight	n!	Where	o = 1…39	
and	n! = 3000, 4000,…41000	(lb).	

!k",$,%,D!
%?;*>@ =	 Number	of	tandem	axles	in	an	FHWA	class	K	(K = 1…10),	for	each	month	@	(@ = 1…12),	for	year	a	

(a = 1… a1,	where	a1	Is	analysis	duration),	corresponding	to	axle	weight	n!	Where	o = 1…39	
and	n! = 6000, 8000,…82000	(lb).	

!k",$,%,D!
%A"*>@ =	 Number	of	tridem	axles	in	an	FHWA	class	K	(K = 1…10),	for	each	month	@	(@ = 1…12),	for	year	a	

(a = 1… a1,	where	a1	Is	analysis	duration),	corresponding	to	axle	weight	n!	Where	o = 1…31	
and	n! = 12000, 15000,…102000	(lb).	

!k",$,%,D!
BC?*  =	 Number	of	quad	axles	in	an	FHWA	class	K	(K = 1…10),	for	each	month	@	(@ = 1…12),	for	year	a	

(a = 1… a1,	where	a1	Is	analysis	duration),	corresponding	to	axle	weight	n!	Where	o = 1…31	
and	n! = 12000, 15000,…102000	(lb).	

,",$,D!
:";<=> 

=	 	Percentage	of	single	axles	in	@3E	month	per	fhwa	class	K,	corresponding	to	axle	weight	n!	where	
o = 1…39	and	n! = 3000, 4000,…41000	(lb).	Note	that	∑ (F,G,H"

7FIJ9K = 100%LM
N&O 	

,",$,D!
%?;*>@ =	 Percentage	of	tandem	axles	in	@

3E	month	per	fhwa	class	K,	corresponding	to	axle	weight	n!	where	
o = 1…39	and	n! = 6000, 8000,…82000	(lb).	Note	that		∑ (F,G,H"

31I6K8 = 100%LM
N&O 	

,",$,D!
%A"*>@ 

=	 Percentage	of	tridem	axles	in	@3E	month	per	FHWA	class	K,	corresponding	to	axle	weight	n!	where	
o = 1…31	and	n! = 12000, 15000,…102000	(lb).	Note	that		∑ (F,G,H"

34F6K8 = 100%LO
N&O 	

,",$,D!
BC?* 

=	 Percentage	of	quad	axles	in	@3E	month	per	FHWA	class	K,	corresponding	to	axle	weight	n!	where	
o = 1…31	and	n! = 12000, 15000,…102000	(lb).	Note	that		∑ (F,G,H"

5P16 = 100%LO
N&O 	

 
Finally, the number of axles are summed over j (i.e., classes) to compute the total number of 
applications of single, tandem, tridem and quad axles, regardless of the class: 

!",%,D!
:";<=> = ∑ !k",$,%,D!

:";<=>'V
$&' 		 	 	 	 	 [16]	

!",%,D!
%?;*>@ = ∑ !k",$,%,D!

%?;*>@'V
$&' 		 	 	 	 [17]	

!",%,D!
%A"*>@ = ∑ !k",$,%,D!

%A"*>@'V
$&' 			 	 	 	 [18]	

!",%,D!
BC?* = ∑ !k",$,%,D!

BC?*'V
$&' 		 	 	 	 	 [19]	

where; 



 9 

!k",%,D!
:";<=>	=	 Number	of	single	axles	for	each	month	@	(@ = 1…12),	for	year	a	(a = 1… a1,	where	a1	is	analysis	

duration),	corresponding	to	axle	weight	n!	Where	o = 1…39	and	n! = 3000, 4000,…41000	
(lb).	

!k",%,D!
%?;*>@ =	 Number	of	tandem	axles	for	each	month	@	(@ = 1…12),	for	year	a	(a = 1… a1,	where	a1	is	analysis	

duration),	corresponding	to	axle	weight	n!	Where	o = 1…39	and	n! = 6000, 8000,…82000	
(lb).	

!k",%,D!
%A"*>@ =	 Number	of	tridem	axles,	for	each	month	@	(@ = 1…12),	for	year	a	(a = 1… a1,	where	a1	is	analysis	

duration),	corresponding	to	axle	weight	n!,	where	o = 1…31	and	n! = 12000, 15000,…102000	
(lb).	

!k",%,D!
BC?* =	 Number	of	quad	axles	i,	for	each	month	@	(@ = 1…12),	for	year	a	(a = 1… a1,	where	a1	is	analysis	

duration),	corresponding	to	axle	weight	n!	Where	o = 1…31	and	n! = 12000, 15000,…102000	
(lb).	
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3. CLIMATIC MODEL 

The climatic model in MEAPA is very similar to the Enhanced Integrated Climatic Model 
(EICM) in the MEPDG. The EICM in the MEPDG includes the following three major 
components: 

• Prediction of temperature with depth is based on the model:  
• The Climatic-Materials-Structural Model (CMS Model) developed at the 

University of Illinois (Dempsey, 1969) 
• Prediction of moisture with depth is based on the model: 

• The Infiltration and Drainage Model (ID Model) developed at the Texas 
A&M University(R L Lytton et al., 1993) 

• Prediction of frost heave: 
• The CRREL Frost Heave and Thaw Settlement Model (CRREL Model) 

developed at the United States Anny Cold Regions Research and 
Engineering Laboratory (CRREL). 

 
MEAPA climatic model is essentially the same as the CMS model implemented within the 
Enhanced Integrated Climatic Model (EICM) to predict pavement temperatures with depth. The 
main references cited for the EICM temperature prediction models in the MEPDG 
documentation are (Larson & Dempsey, 1997)(Dempsey & Thompson, 1970). Unfortunately, 
none of these references provided sufficient detail to implement the climatic model. The project 
team obtained the hard copy of the original PhD dissertation by Barry Dempsey (Dempsey, 
1969), which included most of the details, but not entirely. Further literature review revealed that 
the information in Dempsey’s dissertation (Dempsey, 1969) coupled with detailed formulations 
for daily solar radiation in (Diefenderfer & Al-Qadi, IL, 2003) provides most of the steps 
required. Further reading into the Fortran codes in Dempsey’s dissertation, and using new 
algorithms for sunrise and sunset times in different days of the year at different geographic 
locations completed the steps. 
 
 Two major components of the MEAPA climatic model include: 

- Energy balance at the surface, where convection and radiation are dominant 
- Progression of temperature within the pavement, where conduction is dominant  

 
Figure 1 shows the sublayering scheme used by Dempsey (Dempsey, 1969). In MEAPA, a 
similar sublayering scheme is used, where the sublayers were all 2 in thick until 73 inches of 
depth, after which the sublayers were 23.667 inches thick. 
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Figure 1. Pavement sublayering in the climatic model (Dempsey, 1969). 

 

3.1 Energy balance at the surface 

At the surface of the pavement, the temperature is mostly affected by the convection and 
radiation. Figure 2 shows the conceptualized heat transfer phenomena between the pavement 
surface and the air and during a sunny/partly cloudy day.  
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{: +{? −{> ∓{W ∓{X ∓{< = }	 [20]	

where; 
~1	 =	 heat	flux	resulting	from	long-wave	radiation	emitted	by	the	atmosphere,	Btu/ft2—hr;	
~Y =	 heat	flux	resulting	from	convective	heat	transfer,	Btu/ft2-hr;	
~K =	 heat	flux	resulting	from	long-wave	radiation	emitted	by	the	pavement	surface,	Btu/ft2—hr		
~J =	 heat	flux	conducted	into	pavement,	Btu/ft2—hr;	
~E =	 heat	flux	resulting	from	transpiration,	condensation,	evaporation,	and	sublimation,	Btu/ft2-hr;	

(~E=	assumed	zero)	
~7 =	 net	shortwave	radiation	entering	into	the	energy	balance	at	the	pavement	surface,	Btu/ft2-hr;	

 

 

Figure 2. Heat flux boundary condition at the surface (Dempsey, 1969) 
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Figure 3. Illustration of the surface nodes used in the energy balance equation 

 
Dempsey (Dempsey, 1969) provides an incremental formulation to solve for pavement surface 
temperature based on the net radiation flux (7123): 
 

&O(a + ∆a) = &O(a) á1 −
Z[∆3

]^∆_# −
Z`∆3

]^∆_
à + &Z(a)

Z[∆3

]^∆_# + &1F4(a)
Z`∆3

]^∆_
+ ~416(a)

Z∆3

]^∆_
				 [21]	

where; 
&O	 =	surface	temperature	(°F)	–	see	Figure	3	
&Z =	temperature	of	the	first	node	within	the	pavement	(°F)	–	see	Figure	3	
H =	 Convection	coefficient	(btu/ft2-hr-F),	which	can	be	calculated	using	the	following	formula:	

	
ã = åPI3[0.00144ç8

a.Léa.c + 0.00097(çO − ç1F4)
a.L]	

where;	
ç1F4	 =	 air	temperature	(°C)	
V1	 =	 pavement	surface	temperature	(°C)	
Vm	 =	 average	air	temperature	and	pavement	surface	temperature	in	Kelvin,	where	

ç8 = 273.0 +
çO + ç1F4

2
	

U	 =	 average	daily	wind	velocity	in	m/sec	
åPI3	 =	 122.93	(unit	conversion	coefficient	from	‘gm-cal/cm2-sec-C’	to	‘btu/ft2-hr-F’	

	

&1F4 =	air	temperature	(°F)	–	see	Figure	3	
K =	thermal	conductivity	(btu/(hr*ft*	°F))	
C =	heat	capacity	(btu/(lb*	°F))	
∆î =	spacing	between	the	nodes	(ft)	
~416 =	 	net	radiation	flux	influencing	heat	transfer	at	a	surface,	Btu/ft2-hr,	which	is	defined	as	follows:	

~416 = ~7 + ~1 − ~K 	 [22]	

where; 
~7 =	 net	shortwave	radiation	entering	into	the	energy	balance	at	the	pavement	surface,	Btu/ft2-hr;	
~1 =	 heat	flux	resulting	from	long-wave	radiation	emitted	by	the	atmosphere,	Btu/ft2—hr;	

84 

85 

∆: 

0.5∆% 
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~K =	 heat	flux	resulting	from	long-wave	radiation	emitted	by	the	pavement	surface,	Btu/ft2—hr		
 
where 

~7 = ~F − ~4 = ï ∗ ñE(a) ∗ á$ + ó ∗
ò

100
à	 [23]	

where 
!! = heat flux resulting from incident short-wave radiation, Btu/ft2-hr; 
!" = heat flux resulting from reflected short-wave radiation, Btu/ft2-hr; 
A  = 0.202 (Dempsey,	1969) 
B = 0.539 (Dempsey,	1969) 
s = % sunshine 
a = absorptivity of pavement surface = 0.85-0.9 for asphalt, 0.6-0.7 for concrete (Dempsey’s 

dissertation); (The pavement surface thermal emissivity for estimating the longwave radiation 
intensity balance was equal to 0.9 and the solar absorption coefficient was equal to 0.95. (Minhoto 
et al., n.d.)) 

ñE(a)	 = solar radiation at time t, Btu/ft2-hr– see discussion on this parameter later in this section. 
 
There are two optional approaches in MEAPA to compute the 72 and 76.  
 
‘Original’ Method 
This is the method implemented in the original MEPDG formulations, where the following 
formulations were used to compute the 72 and 76: 

~1 = ~_	 [24]	

~K = ~2 ∗ ô1 − ö ∗
100 − ò

100
õ	 [25]	

where 
N = cloud	base	factor,	which	ranges	from	0.8	to	0.9	(assumed	N	=	0.8) 
s = % sunshine 
~2	 =	 long-wave	radiation	emitted	from	a	surface	without	cloud	cover	correction,	Btu/ft2-hr,	which	is	

defined	as	follows:		
~2 = úù ∗ &Od

e 	
where;	
ú =	 0.172x10-8	Btu/hr-ft2-R4	(Stefan-Boltzmann	constant)	
ù	 =	 Emissivity.		Emissivity	values	are	typically	between	0.93	and	0.98	(assumed	ù = 0.95)	

(Marchetti	et	al.,	2004)	
T1R	 =	 Rankine	temperature	of	surface	node	

 	 	
	

~_	 =	 long-wave	back	radiation	not	corrected	for	cloud	cover,	Btu/ft2—hr,	which	is	defined	as	follows:	
 	

~_ = ú ∗ &1F4d
e ∗ [† − ° ∗ (10Tfg)]	

where;	
G	=	 0.77	
J	=	 0.28	
¢	=	 0.074	
p	=	 vapor	pressure	=	1-10	mmHg	

TairR	=	 Rankine	temperature	of	air	
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‘Revised’ Method 
This is an improved (more physically consistent compared to the original EICM) method that can 
better consider the effects cloud cover (Forman & Margulis, 2010; Sugita & Brutsaert, 1993). In 
this method, the following formulations were used to compute the 72 and 76: 

~1 = ~_ ∗ ô1 + ö4Kh ∗
100 − ò

100
õ	 [26]	

~K = ~2	 [27]	

where 
Nrev = Revised	cloud	base	factor,	which	is	equal	to	0.17. 

s = % sunshine 
~2	 =	 long-wave	radiation	emitted	from	a	surface	without	cloud	cover	correction,	Btu/ft2-hr,	which	is	

defined	as	follows:		
~2 = úù ∗ &Od

e 	
where;	
ú =	 0.172x10-8	Btu/hr-ft2-R4	(Stefan-Boltzmann	constant)	
ù	 =	 Emissivity.		Emissivity	values	are	typically	between	0.93	and	0.98	(assumed	ù = 0.95)	

(Marchetti	et	al.,	2004)	
T1R	 =	 Rankine	temperature	of	surface	node	

 	 	
	

~_	 =	 long-wave	back	radiation	not	corrected	for	cloud	cover,	Btu/ft2—hr,	which	is	defined	as	follows	
(Idso,	1981):	

 	
~_ = ú ∗ &1F4d

e ∗ [0.74 + 0.0049 ∗ £8i]	

where;	
£8i	 =	 vapor	pressure	in	Millibar	(1mm-Hg	=	1.3322	Millibar)	
TairR	 =	 Rankine	temperature	of	air	

		 	
		 	
		 	

	

Numerical Stability  
It should be noted that for numerical stability of the finite difference formulation given in 
equation [21] , the following condition must be met: 

∆a ≤
•å∆î

2(ã +
¶
∆î)

	 [28]	

 

3.1.1 Daily and hourly solar radiation (R) 

Daily solar radiation is computed using the following formula Diefenderfer and Al-Qadi, IL, 
“Development and Validation of a Model to Predict Pavement Temperature Profile.” (kJ/m2-day 
or Btu/ft2-day (1 kJ/m2-day  = 0.088055075028155 Btu/ft2-day)): 
 

ñ =
24

ß
	®7Y	©0	sin™	sin´	 ¨

≠7ß

180
− tan≠7Æ	 [29]	

where; 
R		 =	 Average	daily	solar	radiation	on	a	horizontal	surface	(kJ/m2-day).	R	is	parabolic	during	the	day,	

equal	to	zero	during	the	night.	
®7Y	 =	 solar	constant	=	4871	kJ/m2-hr		(=	442	Btu/ft2-hr)	
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™	 =	 latitude	(degrees)	
©0 =	 eccentricity	factor:	

 	 Ej = 1.000110 + 0.034221cosΓ + 0.001280sinΓ + 0.000719cos2Γ	 + 0.000077 sin 2Γ	 
Γ =	 Zk6$%&

Llm
	=	day	angle	(rad)	

dn = The	day	number	of	the	year	ranging	from	1	to	365	
´ = Solar	declination	(degrees)	
  ´ = (0.006918 − 0.399912∞±òΓ + 0.070257ò@≤Γ − 0.006758∞±ò2Γ + 0.000907ò@≤2Γ

− 0.002697∞±ò3Γ + 0.00148ò@≤3Γ)	
≠7 = sunrise hour angle (degrees);  

 	
≠7 = cosTO(− tan™ tan ´)	

Few example daily solar radiation values are illustrated in Table 3.  

Table 3. Daily solar Radiation Values for Four Locations in the Eastern United States 

 
 

In order to be able to calculate the hourly temperature with depth, the daily solar radiation needs 
to be converted to hourly solar radiation for each day. For this, Dempsey (Dempsey, 1969) 
assumed a parabolic shape, as shown in Figure 4, between sunrise and sunset times. There is no 
information in Dempsey’s dissertation as to how the sunrise and sunset times are determined 
(Dempsey, 1969). In Figure 4, it is shown that 6am is the assumed sunrise time and 6pm is the 
assumed sunset time. In this project, an algorithm (see Figure 5) was used to compute the sunrise 
and sunset times based on latitude, longitude, date and time in a year.  

 
Figure 4. Assumed variation of intensity of solar radiation in Dempsey’s dissertation 

(Dempsey, 1969). 

 
 
function [rise_time, set_time] = f_sun_up_down(date, latitude, longitude, daylight_saving, UTC) 
% example inputs: 
% date = '2009-05-20' 
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% latitude = 42.699013; 
% longitude  = -84.412416;  
% daylight_saving = 1 
% UTC = -5 
%Calculates Julian Day Number (jdn) 
    date_str = strsplit(date, '-'); 
    year = str2double(char(date_str(1))); 
    month = str2double(char(date_str(2))); 
    day = str2double(char(date_str(3))); 
  
    a = floor((14 - month)/12); 
    y = year + 4800 - a; 
    m = month + 12*a - 3; 
  
    jdn = day + floor((153*m + 2)/5) + 365*y + floor(y/4) - floor(y/100) + ... 
          floor(y/400) - 32045; 
 
%Calculate days since 1st Jan 2000 
    n = jdn - 2451545 + 0.0008; 
    J_star = n - longitude/360; 
    M = mod(357.5291 + 0.98560028*J_star, 360); 
    C = 1.9148 * sind(M) + 0.0200 * sind(2*M) + 0.0003 * sind(3*M); 
    lambda = mod(M + C + 180 + 102.9372, 360); 
    J_transit = 2451545.5 + J_star + 0.0053*sind(M) - 0.0069*sind(2*lambda); 
    delta_sin = sind(lambda)*sind(23.44);   omega_0_cos = (sind(-0.83) - 
sind(latitude)*delta_sin)/(cosd(latitude)*cosd(asind(delta_sin))); 
    J_set = J_transit + acosd(omega_0_cos)/360; 
    J_rise = J_transit - acosd(omega_0_cos)/360; 
     
    rise_time = (J_rise - jdn)*24 + daylight_saving + UTC; 
    set_time = (J_set -jdn)*24 + daylight_saving + UTC; 
     
 

Figure 5. A MATLAB algorithm to calculate sunrise and sunset times. 

 
Figure 6 shows an example sunrise and sunset times in a year for Lansing, MI. 

 
Figure 6. Example sunrise and sunset times for Lansing, MI (daylight savings time is 

ignored) 
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Figure 7. Parabolic shape of the hourly solar radiation variation  

 
Once the sunrise and sunset times in a given day are obtained, the total daily solar radiation is 
converted into hourly solar radiation using the following parabolic formula (derived from the 
Fortran source code in dissertation by Dempsey 1969) (see Figure 7): 
 

"#($) =
3"
4)$ ()% − +%) [30]	

 
where; 
ñE(a)		 =	 solar	radiation	at	time	t,	Btu/ft2-hr	
x,	w	 =	 see	Figure	7	
f	 =	 (a77 − a74)/2	
≥ =	 (a − agK1N)	
a74	 =	 sunrise	time	
a77 =	 sunset	time	
agK1N =	 time	when	sun	is	at	its	peak	= 	 (a77 + a74)/2	
R =	 total	solar	radiation	per	day	Btu/ft2-day	

ö±a¥	aℎïa	ñ(a) = 0	@∂	t < a74	±∏	t > a77		

3.2 Propagation of surface temperature into the pavement layers 

Conduction is the dominant mechanism for propagation of the surface temperature into the 
pavement structure. For this, the one-dimensional Fourier heat-transfer finite difference equation 
is used: 

∫Z&

∫îZ
=
1

ª

∫&

∫a
 [31]	
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The equation above can be discretized into the following set of equations, based on the sublayer 
definitions illustrated in Figure 8. 
 

∫&

∫a
=

ª

∆îZ
(&ITO − 2&I + &InO)	for	nodes	n = 2…N − 1	 [32]	

 
∫&

∫a
=

ª

∆îZ
(&ITO − 2&I + &Y0I)	for	node	n = N	 [33]	

 

&I(a + ∆a) = &I(a) +	
op

o3
∆a	 	 [34]	

where; 
N	 =	 total number of nodes	
ª	 =	 thermal diffusivity (ft2/hr) (; = </>?)	

&7P4q =	 surface temperature (°F) 
&Y0I =	 51oF = constant temperature at a depth of 144 inches (°F) 

 
For numerical stability, time step should be kept below a certain value, as described below: 

∆a ≤
•å∆îZ

2¶
	 [35]	

 

 
Figure 8. Pavement sublayers used in the climatic model 
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At the interface between two layers of asphalt or interface between the base/asphalt etc., the 
following equation is used to propagate the temperature (for nodes n=2…N-1) 

∫&

∫a
=

1

∆îZ(åITO•ITO + åInO•InO)
(&ITO2¶ITO − 2&I(¶ITO+¶InO) + &InO2¶InO)		 [36]	

 
For stability of the equation above, the following equation must be hold: 
 

∆a ≤
(åITO•ITO + åInO•InO)∆î

Z

2(¶ITO +¶InO)
 [37]	

 

3.3 Example runs and validation 

Figure 9 illustrates an example pavement structure with temperature variation with depth, at 
specific time (t=46 hrs after the beginning of the simulation). In AC modeling, histogram of the 
hourly temperatures are computed for each month (see Step 2 in Figure 9), then the histogram is 
divided into five equal intervals, i.e., quintiles. Then the temperature at the center of each 
quintile is computed. The pavement structural models in AC is run using the moduli that 
correspond to each quintiles and distresses are computed at each of the five quintiles.  
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Figure 9. An example temperature profile computed by the climatic model and illustration 
of the determination of the temperatures at each quintile. 

 
A comparison of the temperatures in different quintiles computed by the EICM model and the 
MCLIM climatic model coded herein are shown in Figure 10 for several depths. As shown, a 
very good match is visible at depths closer to the surface. The difference increases with 
increasing depth. 
 

 
 

Figure 10. Comparison of EICM and the MEAPA climatic model at different quintiles, at 
different depths.
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4. MODELING AC-GB: ASPHALT CONCRETE OVER GRAVEL BASE 

As mentioned previously, the following distresses are computed for the pavement type AC-GB 
(Asphalt Concrete over Gravel Base): 
 

1. AC top-down fatigue cracking (ft/mile) 
2. AC bottom-up fatigue cracking (%) 
3. AC thermal cracking (ft/mile) 
4. Rutting – AC, base, subbase, subgrade (in) 
5. International Roughness Index (IRI) (in/mile) 

 
The general steps of the algorithm are as follows: 
 

1. Development of the |E*| master curves for the AC layer(s) 
2. Sublayering of the structure 
3. Calculating equivalent frequencies and load correction factors using the MEPDG 

procedure 
4. Running the climatic model and obtaining temperature at the center of each sublayer 
5. Running the Global Aging System (GAS) model 
6. Calculation of the elastic moduli in five quintiles in a given month using the temperature 

at each quintile, frequency and the |E*| master curve coefficients. 
7. Defining the critical strain locations for each type of distress 
8. Running the thermal cracking model 
9. Running the MatLEA structural response model at each quintile of each month, then: 

a. Compute the top-down cracking increment 
b. Compute the bottom-up cracking increment 
c. Compute the AC rutting increment 
d. Compute the base/subbase rutting (same model) increment  
e. Compute the subgrade rutting increment. 
f. Summation of the distresses computed during 5 quintiles of each month to 

compute the cumulative monthly distresses. 
10. Compute IRI values for each month 
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4.1 Development of the |E*| master curve(s) for the AC layer(s) 

The following sigmoid formulation is used to construct the |E*| master curves for each AC layer: 

@±º(|©∗|) = ∞1 +
s2

1+v'3+'4+,-((/0)
	  [38]	

where; 
|©∗|	 =	 Dynamic	modulus.	
a4 =	 Time	of	loading	at	the	reference	temperature.	
∞1 =	 Minimum	value	of	©∗.	

∞1 + ∞2 =	 Maximum	value	of	©∗.	
∞3, ∞4 =	 Parameters	describing	the	shape	of	the	sigmoidal	function.	

 
The reduced time ($1) is essentially equivalent to stress pulse duration, and defined using the 
following formula: 

æ±º(a4) = æ±º(a) − æ±º[ï(&)]		 	 	 	 	 [39]	

where; 
a4	 =	 	Time	of	loading	at	the	reference	temperature.	
a =	 	Time	of	loading	at	a	given	temperature	of	interest.	It	is	assumed	that	a = 1/∂	

where	f	=	frequency	(Hz)	at	the	center	of	the	sublayer.	
ï(&) =	 	Shift	factor	as	a	function	of	temperature.	
& =	 	Temperature	of	interest.	

The shift factor coefficient is a function of the temperature: 

æ±º(ï(&)) = ïOø&
Z − &4Kq

Z ¿ + ïZ(& − &4Kq)		 	 	 [40]	

 
where; 
ï(&)	=	 	Shift	factor,	as	a	function	of	temperature.	
ïO, ïZ =	 	Constants.	
&4Kq =	 	Reference	temperature	

In addition, a gaussian function is fit to the phase angles, to develop a phase angle master curve: 

™ = ¡O¥
T
(2#345678	)#

#2:# 	 	 	 	 	 [41]	

where; 
™	 =		Phase	angle	(degrees).	

¡O, ¡Z, ¡L  =		Constants.	
æ±ºa4 =		Logarithm	of	the	reduced	time	

 
An example |E*| and phase angle inputs and corresponding |E*| and phase angle master curves 
are shown in Figure 11. 
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Figure 11. An example |E*| and phase angle input and corresponding |E*| and phase angle 

master curves 

 
 

4.2 Sublayering Pavement Structure and Analysis Points 

Pavement layers are sublayered into several layers. This is needed for:  
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- Calculation of temperature, frequency and then the moduli of each AC sublayer using the 
|E*| master curve coefficients. 

- Calculation of the rutting at the center of each sublayer in all pavement layers 
- Calculation of thermal stresses at the center of each sublayer in thermal cracking model. 

The sublayering is done using the following rules: 

- Top layer:  
- If the thickness is greater than 1.5”, subdivide into layers with 0.5”, 0.5”, 1” layers 

and the remaining thickness. For example, if the thickness is 1.75”, the sublayers 
are 0.5”, 0.5” and 0.75”. If the thickness is 4.25”, the sublayers are 0.5”, 0.5”,   
0.25”, 1”, 1” and 1”. 

- If the thickness is less than 1.5”, there is no sublayering. Entire layer is treated as 
one sublayer. 

- Subsequent layers: 
- If the thickness is greater than 2”, subdivide into multiple 2” sublayers and 

remaining thickness. One exception is that if the remaining thickness is between 2” 
and 4”, entire remaining thickness is treated as one sublayer. 

- If the thickness is less than 2”, there is no sublayering. Entire layer is treated as one 
sublayer. 

Figure 12 shows example sublayering of a three-layer structure. Figure 12 also shows the 
structural analysis points for a single axle, dual tire. The analysis points for the single axle dual 
tire are selected as follows: 

- In z-direction: At the surface, center of each sublayer, at the bottom of the AC layer and 
the top of the subgrade 

- In x-direction: At the center between the dual tire, halfway between the center of the dual 
tire and the edge of the tire, at the edges of the tire, at the center of the tire, then 4”, 8”, 
16”, 24” and 32” away from the outer edge of the tire. 

 
Figure 13 shows the analysis points for the single, tandem, tridem and quad axles. In z- and x-
directions, the points are selected same as the single axle and this set is herein called the XZ 
point cloud. In tandem axle, 3 sets of XZ point clouds are placed; two at the centerlines of the 
two dual tires and one at the midpoint between the axles. 
 
Similarly, in tridem and quad axles, the XZ point clouds are placed along the centerlines of the 
dual tires and at the midpoint between the dual tires in the y-direction. As a result, 5 sets of XZ 
point clouds are generated in tridem axle and 7 sets of XZ point clouds are generated for the 
quad axle, as shown in Figure 13. 
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Figure 12. Example sublayering of a three-layer structure and analysis points for the single 

axle dual tire configuration 

 

 

Figure 13. Analysis points for the single, tandem, tridem and quad axle configurations. 
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4.3 Calculation of the loading frequency  

The calculation of the loading frequency is based on the concepts used by the MEPDG, where 
the stress pulse is assumed to be haversine, and its duration depends upon the vehicle speed and 
the depth of the point of interest below the pavement surface. The following equation relates the 
time of load to the vehicle speed, and the effective length of the pulse.  

a =
¬Kqq
17.6	√7

 [42]	

where; 
a	=	Duration	of	load	(sec)	

¬vww	 =	Effective	length	(inch)	
√7 =	Velocity	(mph)	

 

The calculation of the effective length at a given point is described in the next paragraphs. The 
loading frequency (f, in Hz) is based on the base time of the loading pulse, according to the 
following relationship:  

∂ =
1

a
	 [43]	

The traffic load applied on top of the pavement surface produces stresses in the underlying 
layers. These stresses spread as a function of the stiffness: stiffer materials tend to distribute the 
stresses over a much wider area compared to the less stiff material. The effective length (Leff) is 
defined as the extent of the stress pulse at a specified depth within the pavement system.  

Based on its definition, the slope of the stress distribution as a function of material stiffness is 
needed for the estimation of the effective length. Since no relationship exists to relate the 
stiffness to the slope of the stress distribution, a simplified approach was used to overcome this 
problem: the concept of equivalent thickness. This concept was first established by Odemark in 
1949. Odemark’s method is based on the assumption that the stresses and strains below a layer 
depend on the bending stiffness of that layer only. If the thickness, modulus and Poisson’s ratio 
of a layer are changed, but the bending stiffness remains unchanged, the stresses and strains 
below the layer should also remain unchanged. The stiffness of a layer is proportional to E

:x
OTh#, 

where h is the thickness, E is the modulus and υ is the Poisson’s ratio of the layer. The 
transformation shown in Figure 14 should not influence the stresses or strains in layer 2 provided 
that: 

7y
z8y

59:y
{ =

7|z8{
59:{

{	  [44]	

or  

ℎ6 = ℎ5B
8y
8{
× 59:{

{

59:y
{

z
	  

[45]	

where he is known as the “equivalent” thickness. 
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Figure 14. Transformation of a layered system using the Odemark’s method 

Using the concept presented by Odemark, any pavement structure can be transformed into an 
equivalent structure having the subgrade modulus and a total thickness given by equivalent 
thickness, he. For simplicity, the stress distribution for a typical subgrade soil is assumed to be at 
45 degrees and using this stress distribution the effective length can be computed at any depth. 

4.3.1 Effective Depth and Length for Single and Tandem Axles 

For any pavement layer, the effective length of the stress pulse is computed at a specific depth 
for which the loading frequency is needed for the computation of the modulus and the following 
linear elastic analysis. This depth is called effective depth (Zeff) and computed by the following 
relationship: 
 

D6;; = ∑ Eℎ<B
8}
8~�

z
F=95

<>5 + ℎ=B
8Ä
8~�

z
	  [46]	

 
For example, in the case of a three asphalt layers pavement structure and for the calculation of 
the tensile strains at the bottom of the asphalt layers, the Equation [5] is: 
 

ƒKqq =≈∆ℎF«
©F
©ÅÇ

:
»

Z

F&O

+ ℎL«
©I
©ÅÇ

:
	 [47]	

 
The effective length of the load pulse at a specific depth under the wheel load is a function of the 
axle configuration. The approach of calculating the effective length of the loading pulse is based 
on the following assumptions: 
 

1. No overlap occurs between axles at an effective depth smaller than the free distance 
between axles. 

2. Complete overlap occurs at effective depths larger than two times the distance between 
axles. 

3. In the interval between depths defined in 1 and 2, the effective length varies linearly with 
depth on a log-log scale. 

 
Thus, the effective length computation is a function of the axle type. In case of a single axle, no 
overlap of stresses occurs at any depth because any other axle is very far. The effective length is 
schematically shown in Figure 15 and mathematically defined by the following equation: 
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¬Kqq = 2. (ïY + ƒKqq)	 [48]	

 
 

 

Figure 15. Effective length computation - Single Axle 

 
Figure 16 shows the layout of the tandem wheel configuration where “ST” is the tandem spacing 
between the axles in the direction of travel. Two stress distributions are formed because of this 
configuration. No overlap between the two distributions occurs close to the pavement surface. 
Then, stresses start to overlap until a complete overlap occurs at an effective depth larger than 
two times the distance between axles (2 ST). 
 
Near the pavement surface, in the “no overlap” zone, two distinct stress pulses will be observed. 
In this situation, the traffic repetitions must be multiplied by a factor of two (traffic multiplier, 
N). At depths greater than 2 ST, in the “full overlap” zone, this axle configuration will generate 
only one stress pulse. The traffic multiplier in this situation is one (N =1). Between these two 
limits (“partial overlap” zone), the effective length of the stress pulse and the traffic multiplier 
are the functions of the amount of overlap of the stress pulses caused by the configuration.  
The effective length and the traffic multiplier can be calculated in the three zones mentioned 
above as follows. 

4.3.1.1 No overlap zone: Zeff < ST/2 - ac 

The effective length for this condition is defined by the following equation: 
 

¬Kqq = 2. (ïY + ƒKqq)	 [49]	

 
As mentioned earlier, two distinct stress pulses can be observed resulting from the tandem axle 
configuration. In this situation, the traffic count for the tandem axle is multiplied by 2, to account 
for the twin peaks at this depth interval. 
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Figure 16. Effective length computation - Tandem Axle 

 

4.3.1.2 Partial overlap zone: ST/2 - ac < Zeff < 2 ST 

As shown in Figure 16, at ST/2 - ac, the effective length can mathematically be defined as ST, 
while at a depth of 2 ST, the effective length is 5ST + 2ac. Based on the third assumption 
presented earlier, between these two points the effective length varies linearly with depth on a 
log-log scale. Thus, the effective length can be calculated using the following equations: 

logø¬Kqq¿ = ï logøƒKqq¿ + …	 [50]	

a =
æ±º

5gp + 2ïY
gp

æ±º
2gp

gp
2 − ïY

	 [51]	

b = loggp − ïæ±º ô
gp
2
− ïYõ	 [52]	

 	

The traffic multiplier for the partial overlap is given by the following relationships. 

logö = a	logƒKqq + …	 [53]	

a =
log 0.5

log∆
2gp

gp
2 − ïY

»

	
[54]	

b = log2 − a	log ô
gp
2
− ïYõ	 [55]	
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4.3.1.3 Partial overlap zone: Zeff => 2 ST 

The effective length for this condition is defined by the following equation: 
 

¬Kqq = gp + 2ïY + 2ƒKqq	 [56]	

 
Since full overlap occurs beyond this depth, only single resultant stress pulse occurs. Thus, the 
traffic multiplier is one (N = 1). 
 

4.3.2 Effective length for any Number of Axles 

 
Generalized equations for multiple axles (n) are similar to those of the tandem axle and 
summarized in Table 4. 
 

Table 4. Generalized formulations for n number of axles (n=3 for tridem, n=4 for quad). 

Zone Equation Note 
No overlap zone: Zeff < ST/2 - ac 
 

¬Kqq = 2. (ïY + ƒKqq)	  The traffic multiplier is 
equal to the number of 
axles (n) of the axle 
configuration. 
 

Partial overlap zone: ST/2 - ac < Zeff 
< 2 (n-1) ST 

log ¬Kqq = ï logƒKqq + … 
where 
 

a =
log

5gp(≤ − 1) + 2ïY
gp

log∆
2gp(≤ − 1)
gp
2 − ïY

»

 

b = loggp − a	log ô
gp
2
− ïYõ 

Traffic multiplier (N) is 
logK = alogD6;; + b 
where  

a =
log

1
≤

log∆
2gp(≤ − 1)
gp
2 − ïY

»

 

b = log ≤ − a	log ô
gp
2
− ïYõ 

Partial overlap zone: Zeff => 2 ST 
(n-1) 

¬Kqq = gp(≤ − 1) + 2ïY + 2ƒKqq The number of loading 
peaks and the traffic 
multiplier is always 
equal to one (N = 1). 
 

 

4.3.3 Selection of the frequency for the analysis 

Figure 17 shows variation of frequency at different load levels in single axle load spectra, for 
each depth (at the center of sublayer). As shown, different load levels in the axle load spectra of 
single, tandem, tridem and quad axles will produce different magnitudes of the frequencies. This 
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is because it is assumed that the tire contact pressure is constant, as a result, the contact radius 
will be different in different load levels. Considering different frequencies in different load levels 
would significantly increase the computation time. Therefore, it is assumed that ‘equivalent’ 
frequency to be used in computation of the moduli of the AC layer is the frequency that 
corresponds to the 18 kip single axle dual tire load (see the cross section of the red dotted line 
with the curves in Figure 17). 
 

 

Figure 17. Variation of frequency with load levels in single axle load spectra and depth. 
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4.4 Effect of aging on the |E*| of the AC sublayers: Global Aging System (GAS) Model 

Effect of aging (due to heat and oxidation) on the modulus of the AC sublayers is considered 
using the Global Aging System (GAS) Model. In the GAS model, the aged viscosity of the 
binder is calculated and subsequently used in the |E*| master curve sigmoid formulation. The 
GAS model includes four components: 
- Original viscosity to mix/lay-down viscosity model 
- Surface aging model 
- Air void adjustment 
- Viscosity-depth model 

4.4.1 Original viscosity to mix/lay-down viscosity model 

Asphalt binder viscosity at HMA placement is estimated as follows: 

æ±º	(æ±º( 3&a) = 	ïa + ïO	æ±º	 æ±º	( 04FJ)	 [57]	

ïa = 	0.054405 + 0.004082 × ∞±¡¥	 [58]	

ïO = 0.972035 + 0.010886 × ∞±¡¥	 [59]	

where; 
ht=0		 =	 	mix/lay-down	viscosity,	cP	(centiPoise)	
horig	 =	 	original	viscosity,	cP	(centiPoise)	
code =	 hardening	ratio	(0	for	average)	
 
Codes used in original viscosity to mix/lay-down viscosity model are shown in Table 5. In order 
to simplify the inputs and not requiring Hardening Ratio as an input, code = 0 is used in the 
models. In addition, equation above is based on the original viscosity (horig). However, often 
times the binder |G*| is measured on RTFO aged binder and used in calculation of horig. In such 
case, a0 = 0 and a1 = 1 is used in algorithms. So RTFO parameter is an input to the algorithms. 
RTFO = 1 means RTFO aging is performed a0 = 0 and a1 = 1 is used, otherwise equations above 
are used to calculate a0 and a1. 
 

Table 5. Codes used in original viscosity to mix/lay-down viscosity model 

Mix/Lay-Down Hardening  Hardening Ratio (HR)  Code  
Excellent to Good HR £ 1.030 -1 

Average 1.030 < HR £ 1.075 0 

Fair 1.075 < HR £ 1.100 1 

Poor HR > 1.100 2 

 

Viscosity of the original asphalt binder is calculated from |G*| at a frequency of 10 rad/s using 
the following relationship: 
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N?1<@ = 1000 ∗ |B
∗|

5C
P 5
D<=E

Q
F.HI4H

	  [60]	

where; 
 04FJ 		 =	 	viscosity,	cP	(centiPoise)	
´	 =	 binder	phase	angle	

 

It is noted that if N?1<@ value calculated using equation above is above 2.7x1012 cP, it is set equal 
to 2.7x1012 cP. 

Once N?1<@ is computed for different values of |S∗| corresponding to different temperatures (8K),  
A and VTS values are computed by fitting a linear equation and determining the slope and 
intercept, using the A-VTS relationship shown below: 

æ±º	 æ±ºø 04FJ¿ = $ + ç&g ∗ æ±º	(&d)	 

	 	 	 	 	 [61] 

Where; 
 04FJ 	=	 	mix/lay-down	viscosity,	cP	(centiPoise)	

&d =	 Temperature	in	Rankine	(oR	=	oF	+	459.67)	
A =	 Intercept	of	viscosity-temperature	relationship	
VTS	 =	 Slope	of	viscosity-temperature	relationship	

 

4.4.2 Surface aging model 

Asphalt binder viscosity at the pavement surface at certain pavement age is calculated as follows: 

log	(æ±ºø 1JK6¿) =
90J	90J(Ñ7;<)nÖ3

OnÜ3
		 	 	 	 	 [62] 

where; 
$	 =	 −0.004166 + 1.41213(å) + (å)	æ±º(Ã$$&) + (%)	æ±ºæ±º( 3&a)	
ó	 =	 0.197725 + 0.068384æ±º(å)	
C	 =	 10áZce.eMelTOML.àLO	90J(p=)nLL.MLll	90J(p=)

#â	
D	 =	 14.5521 + 10.47662	æ±º(&d)	– 1.88161	æ±º(&d)

Z	
haged =	 aged viscosity, cP (centiPoise) 
ht=0		 =	 viscosity at mix/lay-down, cP (centiPoise) 
MAAT	=	 mean annual air temperature, °F 
TR =	 temperature in Rankine (oR = oF + 459.67) 
t =	 time in months  

 

It is noted that if N2@63 value calculated using equation above is above 2.7x1012 cP, it is set equal 
to 2.7x1012 cP. 
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4.4.3 Air void adjustment 

Asphalt binder viscosity at the surface is corrected for air voids using the following relationship:  

log áæ±ºø 1JK6
ä ¿à = Õhæ±º áæ±ºø	 1JK6¿à	 	 	 	 	 [63] 

Õh =
OnO.aLlc×Oa%>(åÖ)(3)
Onl.OcMà×Oa%>(3) 	 	 	 	 	 	 [64] 

ç$ =
åÖ58?6na.aOO(3)TZ

One.Ze×Oa%>(3)(çÖÖp)nO.OlM×Oa%:é 7
@58?6,BB

è
+ 2	 	 	 	 [65]	

where; 
 1JK6
ä 	=	 viscosity	at	the	surface	is	corrected	for	air	voids	

VAorig		=	 initial	air	voids	in	HMA	
a	 =	 time	in	months	since	

MAAT	=	 mean	annual	air	temperature,℉	
horig,77 =	 original	binder	viscosity	at	77	°F,	MPoise	(Mega	Poise)	
 

It is noted that the formulation above resulted in unreasonable results as described later in this 
section. Therefore, these equations were omitted in the models by simply equating T: to unity 
(i.e., T: = 1). 

4.4.4 Viscosity-depth model 

Aged viscosity as a function of depth based on the aged viscosity from the surface and viscosity 
at mix/lay-down is calculated using the following relationship: 

 3,_ =
Ñ7(enx)Tx(Ñ7;<)(OTe_)

e(Onx_)
	 	 	 	 	 [66]	

where; 
ht,z		=	 aged	viscosity	at	time	t, and	depth	z,MPoise	
ht		=	 aged	surface	viscosity,MPoise	
z		 =	 depth, in	
E	 =	 23.83e(Ta.aLaà	êëëí),	where		

It is noted that if any NL,M value calculated using equation above is above 2.7x1012 cP, it is set 
equal to 2.7x1012 cP. 
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4.4.5 Discussion on the GAS model 

An observation was made when the GAS model was implemented by following exact steps 
described above. As shown in Figure 18, the modulus values actually decreased with time. An 
investigation of why this happened revealed that the Fv parameter (the air void adjustment) was 
causing this phenomenon. As shown in Figure 19, the air-void corrected viscosity starts to 
decrease after about 30 months. Figure 20 shows the change in air voids and parameter Fv with 
time, where significant decrease in Fv is observed. Since Fv is a multiplier to the aged viscosity, 
after certain months, it causes the viscosity to decrease. While reading through the original paper 
describing the GAS model (Mirza & Witczak, 1995) it was realized that this parameter was 
actually an ‘optional’ parameter. A screenshot of the AAPT paper Mirza and Witczak. discussion 
is shown in Figure 21. Therefore, it was decided to set Fv = 1, i.e., air void adjustment is 
ignored. 
 
 

 
Figure 18. Comparison of MEPDG and MEAPA results for |E*| at top 0.5” sublayer, using 

the GAS model as described in the formulations. Climate: Lansing, MI. 
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Figure 19. Comparison of viscosities with time 

 

Figure 20. Change in air voids and parameter Fv with time. 
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Figure 21. A snapshot from the discussion section of the AAPT paper Mirza and Witczak. 

 
Figure 22. Mid Quintile AC sublayer temperature (AC(1), h=0.5") when Fv = 1 is used. 
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4.5 Thermal Cracking  

An overview of the thermal cracking model and basic formulations are shown in Figure 23. As 
shown, the basic propagation of the thermal crack length (C) within the depth of the pavement is 
based on a simplified Paris law. Once the C is computed, a probabilistic standard normal 
distribution is assumed and actual observed crack on the surface, in terms of ft per mile, is 
computed. 
 
 The thermal crack model includes the following basic steps: 

1. Convert dynamic modulus |E*| to relaxation modulus E(t) using Prony-series based 
procedure 

2. Calculate the thermal cracking fracture growth (Paris Law) parameters (e.g., m-value) 
3. Calculate thermal strains caused by temperature fluctuations at different sublayers (using 

coefficient of thermal expansion/contraction) 
4. Calculate reduced time using dynamic modulus master curve shift factor coefficients. 
5. Solve convolution integral to compute the thermal stresses via state variable 

implementation (most time-consuming component) 
6. Convert hourly stress fluctuations into daily max and daily minimum stresses. 
7. Calculate maximum and minimum stress intensity factor (K) in a given day, then 

calculate DK = Kmax-Kmin. 
8. Calculate parameter A from the indirect tensile strength of the layer where the crack tip 

is, and m-value 
9. Calculate DC and update the crack length C ß C + DC 
10. Calculate the observed amount of thermal cracking (Cf) using the standard normal 

distribution equation, and using the crack length C. 
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Figure 23. An overview of the thermal cracking model and basic formulations.



 41 

 

4.5.1 Conversion of |E*| to E(t)  

Since there is a correspondence between the |E*| and E(t), one can be computed from the other 
one. This eliminate the need for including the creep compliance (D(t)) as an input, as is done in 
MEPDG. In the conversion procedure, both |E*| and phase angle of the asphalt mixture is needed. 
Since phase angle is always measured during |E*| test, this does not constitute an additional input 
requirement. The |E*| to E(t) conversion procedure is originally described in the original paper by 
Park and Schapery (Park & Schapery, 1999). However, the steps were not very clear in the original 
paper and validation using asphalt mixtures was not given. A step-by-step description and 
laboratory validation of this procedure is given by Jamrah and Kutay (Jamrah & Kutay, 2015)  
 
General steps of the interconversion procedure is given below: 
 

1. Calculate the storage modulus("!(#")) as a function of reduced angular frequency (#") 
using the dynamic modulus (|E*|) and phase angle (d): 

"!(#") = |"∗(#")|cos	(+(#"))                                         [67] 

2. Fit a sigmoid function to the "!(#") data in a log-log scale.  
3. Obtain the equilibrium modulus "$ from the minimum value of sigmoid fitted E’ in the 

log-log scale. 
4. Define Prony series representation of storage modulus (E’) is: 

                                            [68] 

5. Rearrange equation above: 

                                                 [69] 

where wR=angular frequency, ri relaxation times of each Maxwell element, which are 
selected to vary for several decades from 10-10 to 1010 s. 

6. The relaxation strength (Prony series coefficients) "% can be calculated by defining 
[A]{X}=[C]  (matrix operations) such that: 

                                                        [70] 

                                                               [71] 

                                                        [72] 

7. Solve for X in [A] {X}= [C] using least square method as follows: 
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                                                          [73] 

8. Knowing "$ and "%, the relaxation modulus E(t) can be calculated using the following 
relationship: 

"(,) = "$ +∑ "%/('( )!)⁄,
%-.                                              [74] 

 
where is the long time elastic modulus, n is the number of elements in the Prony series (i.e. 

each Wiechert element) and are the retardation time given by: 

       [75] 

where and  are the viscous damping and elastic coefficients of each Wiechert element (see 
Figure 25). 
 
 An example relaxation modulus (E(t)) master curve computed from |E*| and phase angle 
master curves is shown in Figure 24. One of the parameters used in thermal cracking fracture 
growth equation based on the Paris Law is the maximum slope (m) of the logE(t) -log(t) curve, 
which is computed using the minimum value of the derivative of the logE(t) -log(t), i.e., 
d(logE(t))/d(log(t)), as shown in Figure 24. Then the facture parameter (n) is computed using the 
following formula: 
 
 

! = 0.8 ∗ '1 + "

#
*	 	 	 	 [76]	

where; 
!			=	 fracture	parameter	used	in	the	exponent	of	the		law	
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Figure 24. Relaxation modulus master curve computed from |E*| and phase angle master 

curves 

 

4.5.2 Thermal strains caused by temperature fluctuations  

The thermal strains at different depths caused by temperature fluctuations are computed by using 
temperature at each depth at each hour during the entire analysis duration. For each depth (e.g., 
at the center of a sublayer), this corresponds to 365 days * 24 hrs = 8,760 strain values for each 
year. For a typical pavement structure with 10 sublayers, and an analysis period of 20 years, total 
1,752,000 strain values are computed. It is assumed that each sublayer is independently 
expanding/contracting like a series of horizontal rods, as illustrated in Figure 25. 
 
Thermally induced strains for each rod are computed using the following one-dimensional 
expansion/contraction equation: 

0(,") = α(T(,") − T/)                                             [77] 

where 
B(D$)	=	Thermal	strain	at	the	reduced	time	D$	
α	 =	Coefficient	of	thermal	contraction	(1/C).	For	AC,	it	can	be	assumed	α =3x10-5	1/C	(Islam	&	Tarefder,	

2015)	
T(D$)	=	Temperature	of	the	sublayer	at	the	reduced	time	of	D$	
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T%	 =	Pavement	temperature	when	the	stress	is	zero.	T%=135oC,	temperature	right	after	the	construction,	
can	be	assumed.	

 

 
 

Figure 25. Illustration of the assumption of independent rods during calculation of thermal 
strains and stresses. 

An example variation of thermal strains with time is shown in Figure 26. 
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Figure 26. An example variation of thermal strains with time. 

4.5.3 Calculate reduced time using dynamic modulus master curve shift factor coefficients. 

The reduced time for each pavement sublayer with a different temperature (T(,")) is computed 
using the following formula: 

," = ∫ 0(
1(2)

(
/                                                [78] 

where 
X(Y)	 =	 Shift	factor	coefficient	for	each	sublayer	for	each	temperature	T,	[\](X(Y)) = X"^Y& − Y'()& ` +

X&(Y − Y'())	
 
It is noted that the reduced time for each sublayer has a different magnitude for a given time t, 
because of the temperature differences.  
 

4.5.4 State variable implementation to solve for convolution integral for stresses 

Viscoelastic stress response of each sublayer to thermal strains computed in the previous steps 
(0(,")) is computed using the following convolution integral: 

a(D$) = ∫ c(D$ − d)
*+

*,
ed-!

%
									 		 																																				[79]	
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where 
c(D$ − d)	 =	 Relaxation	modulus	evaluated	at	time		=	D$ − d	
B =	 Thermal	strain	at	time	=	D$ ,		B(D$))	
a(D$) =	 Thermal	stress	at	time	=	D$	
d =	 Time	variable	of	the	integration.	

 
The equation above is impossible to solve tradionally for the duration of a typical analysis (e.g., 
for every hour for the duration of 20 years). Therefore, the state variable implementation, which 
converts the solution to an incremental solution, is used (see (M.E. Kutay & Lanotte, 2018)). In 
state variable implementation, the relaxation modulus is represented with a Wiechert 
(Generalized Maxwell) model (see Figure 25) using the Prony series: "(,) = "$ +
∑ "%/('( )!)⁄,
%-. .                                  

 

a(D$) = c.B(D$) +h a/(0(D$)
1

/2"
	

 

  
[80] 

 

where 5(,") is viscoelastic stress at a reduced time ," (for each depth), is the long-time 

elastic modulus, n is the number of elements in the Prony series (i.e., Generalized Maxwell 
model), and is the stress in each Maxwell element at time t, which is computed using the 

following incremental formulation: 

 [81] 

where , and , respectively, are the retardation time, viscous damping and elastic 

coefficients of each Generalized Maxwell element. 

An example variation of viscoelastic stresses due to thermally induced strains is shown in Figure 
27. 

4.5.5 Daily maximum and minimum stresses and stress intensity factor 

At this stage, hourly viscoelastic thermal stresses are used to compute the maximum and 
minimum thermal stresses in a given day. Figure 28 illustrates the daily maximum (5314) and 
minimum (53%,) thermal stresses used in the thermal cracking formulations. Next step is to 
compute the stress intensity factor (K). Stress intensity factor, K, is computed using a simplified 
equation developed from theoretical finite element studies: 

"!"# =	a345(0.45 + 1.99 ∗ j60.56)	 [82] 

"!$% =	a3;<(0.45 + 1.99 ∗ j60.56)	 [83] 

where;  
   

E¥

( )el
i ts

[ ]ii e
t

ttet i
el
i

tel
i

rr hess /)t(/)( 1)()( D-D- -
D
D

+D-=

ir ih iE



 47 

k#=> , k#/1 = Daily	maximum	and	minimum	stress	intensity	factor	at	depth	of	crack	tip.	
a#=> , a#/1 = Daily	maximum	and	minimum	viscoelastic	thermal	stress	at	depth	of	crack	tip,	psi.	

j? = Current	crack	depth	for	a	given	day,	in.	
 

 
Figure 27. An example variation of viscoelastic stresses due to thermally induced strains. 
Please note that, in this example, there is a different asphalt layer at depth = 3”, which is 

the reason for less stress response compared to the other depths. 
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Figure 28. Illustration of the daily maximum and minimum thermal stresses used in the 
thermal cracking formulations. 

4.5.6 Calculation of crack depth (Co) 

After calculation of daily maximum and minimum stress intensity factors, the stress intensity 
increment is calculated: 

∆k = k#=> −k#/1	 [84] 

Then the parameter A is calculated from the indirect tensile strength of the layer where the crack 
tip is, and n-value: 
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o = 10@.ABCD&.E&∗GHI("%%%%∗KLM∗1)	 [85] 

where; 
pqY = Indirect	tensile	strength	of	the	layer	where	the	crack	tip	is,	in	psi.	
! = Fracture	parameter(n= 0.8 ∗ (1 + 1/r))	

Change in the crack depth is computed using the simplified Paris law: 

 
[86] 

 
DC =	 Change	in	the	crack	depth	due	to	a	cooling	cycle.	
DK =	 Change	in	the	stress	intensity	factor	due	to	a	cooling	cycle.	
A, n =	 Fracture	parameters	for	the	HMA	mixture.	
$& =	 Global	calibration	factor,	equal	to	16.	
" =	 Local	calibration	factor	(an	input)	

 

The depth of the crack length is updated for each day:  

j?^DO=P + 1` = j?^DO=P` +	∆j	 [87] 

 
%' =	 Crack	depth,	in.	
&($) =	 Time,	days	
∆% =	 Change	in	the	crack	depth	due	to	a	cooling	cycle	in	a	day	

 

Finally, the observed amount of thermal cracking (Cf) is computed using the standard normal 
distribution equation: 

j) = j)#=> ∗
1

x-√2z
{
D
(>"DQ")#

&R$# 	
[88] 

 
%* =	 Crack	length,	ft/mile.	
%*!$% =	 2112	ft/mile	(maximum	possible	observed	crack	length)	
(+ =	 Normalized	crack	depth	fr	a	given	day,	in	(see	equation	elow)	
)& =	 Standard	deviation	of	the	normal	distribution,	)&=	0.769/2	
*+ =	 Mean	of	the	normal	distribution,	which	is	equal	to	zero	in	this	case.		

 

}S =
1

0.769 log"% ~
j?
ℎ=S

Ä	 [89] 
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Figure 29. An example variation of computed thermal crack depth (Co) and observed crack 
length (Cf) 
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4.6 Layered Elastic Analysis program: MatLEA 

A computationally efficient layered elastic analysis program, called MatLEA (coded in 
MATLAB) was used in this work. The MatLEA is publicly available and formulations and 
computational steps are almost identical to those of the MnLayer software (Khazanovich & 
Wang, 2007). The concept is based on the Burmister’s multi layered elastic theory (Burmister, 
1945) and MatLEA solution procedure is described in Appendix G. The main differences 
between the MnLayer software and MatLEA are: 

• A, B, C, D parameters (as described in described in Appendix G) are computed via 3D 
matrix inversion (making the program faster) 

• The integration over the ‘m’ (the inverse Henkel transform variable) is done via bulk 
matrix operations. 

An example run results of MatLEA for a 3-layer structure is shown in Figure 30. The evaluation 
points are shown as black dots in the figures. The response of total 315 points were computed (9 
Z-coordinates and 35 R-Coordinates). Runtime for this particular run was 137 milliseconds. 

 

Figure 30. An example run of MatLEA for a 3-layer structure 
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A comparison of MatLEA results with those of CHEVLAY2 for radial microstrain is shown in 
Figure 31. Comparisons of MatLEA results with CHEVLAY2 and JULEA programs for 
microstrains in other directions are shown in Appendix H. As shown, a perfect match between 
the MatLEA and CHEVLAY2 is visible. Even though generally there is a good match between 
MatLEA and JULEA, some differences were observed (see Appendix H). Given the fact that 
MatLEA and CHEVLAY2 agree with each other very well, the errors are possibly due to the 
computational issues with JULEA program. 

The MatLEA run time within MEAPA is about 100 milliseconds in the first run in a computer 
with Intel Core I7 processor with 2.5GHz speed (16 GB RAM). However, in subsequent runs in 
the ‘for loop’ that is going over the quintiles and months, it takes about 30 milliseconds for each 
run. 

 

Figure 31. A comparison of MatLEA results with those of CHEVLAY2 for radial 
microstrain (which is used in models of bottom-up and top-down cracking) 
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4.7 Bottom-up Fatigue Cracking  

The bottom up fatigue cracking is based on the traditional fatigue life formulation, Miner’s law 
of linear damage growth and transfer functions converting damage to observed fatigue cracking 
in the field. The material level traditional fatigue life formulation used herein are as follows: 
 

Å) = jTjÇ)"É)" ~
1
B-
Ä
U%#V%#

~
1
cÄ

U%&V%&
	 [90] 

j = 10@.B@W
X'(

X)YX'(
D%.ZC[	

 
[91] 

 
 

[92] 

where, 

B-	 =	 tensile	strain	at	the	bottom	of	AC	
Nf	 =	 Number	of	cycles	to	failure,	for	bottom-up	cracks	

kf1,	kf2,	kf3	 =	 Global	field	calibration	parameters	(from	the	NCHRP	1-40D	re-calibration;					
kf1	=	0.007566,	kf2	=	-3.9492,	and	kf3	=	-1.281).	

βf1,	βf2,	βf3	 =	 Local	or	mixture	specific	field	calibration	constants;	for	the	global	calibration	
effort,	these	constants	were	set	to	1.0.	

hac	 =	 height	of	the	AC	layer	
bbui	 =	 Coefficients:	bbu1=0.000398,	bbu2=0.003602,	bbu3=11.02,	bbu4=3.49	
E	 =	 Equivalent	modulus	of	bottom	layer	(at	the	given	temperature/frequency)	
Vbe	 =	 Effective	asphalt	content	by	volume,	%	
Va	 =	 Percent	air	voids	in	the	HMA	mixture,	%	

 

The critical strain at the bottom of AC is computed at several analysis locations for single, 
tandem, tridem and quad axles. For each axle, the simulation is done for dual tires. 

4.7.1 Calculation of Damage 

Figure 32, Figure 33, Figure 34, and Figure 35 show critical strains computed by single, tandem, 
tridem and quad axles, respectively.  As shown, the critical strains are computed at different X 
and Y locations at the bottom of the AC layer. This is needed for simulation of wheel wander 
and include its effect in the accumulated damage.  For each axle, the maximum strain profile in 
Y direction is identified. An example of maximum strain profile for different axles is shown in 
Figure 36. This strain profile is used to calculate the number of cycles to failure for different 
locations in X direction, which is subsequently used in calculation of bottom-up damage due to 
each axle using the following formula: 

q\]
^_`abc(ã) =

Å/,-,e*
^_`abc

Å)(ã)
	 [93] 
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Figure 32. Critical strains computed at the bottom of AC due to single axle dual tire 
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Figure 33. Critical strains computed at the bottom of AC due to tandem axle dual tire 
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Figure 34. Critical strains computed at the bottom of AC due to tridem axle dual tire 
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Figure 35. Critical strains computed at the bottom of AC due to quad axle dual tire 
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Figure 36. Maximum strain profile for different axles. 

 

q\]fg`hci(ã) =
Å/,-,e*
fg`hci

Å)(ã)
	 [94] 

q\]fj_hci(ã) =
Å/,-,e*
fj_hci

Å)(ã)
	 [95] 

q\]
klgh(ã) =

Å/,-,e*
klgh

Å)(ã)
	 [96] 

where;  

+*(-) =	 Number	of	cycles	to	failure	based	on	the	tensile	strain	each	location	in	X	direction.	
Å/,-,e*
R/1m0(	 =	 Number	of	single	axles	for	each	month	ç	(ç = 1…12),	for	year	D	(D = 1… D=,	where	D=	is	analysis	

duration),	corresponding	to	axle	weight	èV	Where	É = 1…39	and	èV = 3000, 4000,…41000	(lb).	
Å/,-,e*
-=1O(# =	 Number	of	tandem	axles	for	each	month	ç	(ç = 1…12),	for	year	D	(D = 1… D=,	where	D=	is	analysis	

duration),	corresponding	to	axle	weight	èV	Where	É = 1…39	and	èV = 6000, 8000,…82000	(lb).	
Å/,-,e*
-'/O(# =	 Number	of	tridem	axles,	for	each	month	ç	(ç = 1…12),	for	year	D	(D = 1… D=,	where	D=	is	analysis	

duration),	corresponding	to	axle	weight	èV ,	where	É = 1…31	and	èV = 12000, 15000,…102000	
(lb).	

Å/,-,e*
n]=O =	 Number	of	quad	axles	i,	for	each	month	ç	(ç = 1…12),	for	year	D	(D = 1… D=,	where	D=	is	analysis	

duration),	corresponding	to	axle	weight	èV	Where	É = 1…31	and	èV = 12000, 15000,…102000	
(lb).	

An example bottom-up damage due to a single axle (656789:;<(7)) is shown in Figure 37. 
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4.7.2 Inclusion of the Effect of Wheel Wander 

In order to simulate the effect of wheel wander, a standard normal distribution is used. The area 
under a standard normal distribution curve can be divided into five equal intervals, with 
normalized center points of -1.2816, -0.5244, 0, 0.5244 and 1.2816. Wheel wander is simulated 
by multiplying the wheel wander standard deviation (Sd), which is an input, by -1.2816, -0.5244, 
0, 0.5244 and 1.2816 and subtracting from each X-coordinate. Then total computed damage (D) 
in Figure 37 is divided by 5 and shifted damage curves (D1, D2, D3, D4 and D5) are obtained, as 
shown in Figure 38.  

q\],/
R/1m0((ã) =

1
5q\]

R/1m0((ã − ëO ∗ í/)	 [97] 

q\],/-=1O(#(ã) =
1
5q\]

-=1O(#(ã − ëO ∗ í/)	 [98] 

q\],/-'/O(#(ã) =
1
5q\]

-'/O(#(ã − ëO ∗ í/)	 [99] 

q\],/
n]=O(ã) =

1
5q\]

n]=O(ã − ëO ∗ í/) [100] 

where; 
q\],/
R/1m0(	(X) =	 Damage	in	position	X,	in	tth		month,		jth		quintile	(temperature),	due	to	single	axle,	at	

shifted	location.	
q\],/-=1O(#	(X) =	 Damage	in	position	X,	in	tth		month,		jth		quintile	(temperature),	due	to	tandem	axle,	at	

shifted	location.	
q\],/-'/O(#	(X) =	 Damage	in	position	X,	in	tth		month,		jth		quintile	(temperature),	due	to	tridem	axle,	at	

shifted	location.	
q\],/
n]=O	(X) =	 Damage	in	position	X,	in	tth		month,		jth		quintile	(temperature),	due	to	quad	axle,	at	

shifted	location.	
ëO =	 Wheel	wander	standard	deviation,	in.	
í/ =	 Standard	normal	distribution	center	points:	-1.2816,	-0.5244,	0,	0.5244	and	1.2816	

 
Figure 37. Damage distribution due to a single axle (/,-

./0123(0)) 
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Figure 38. Simulation of wheel wander by shifting the damage distribution. Each subfigure 
shows 8=>,8

789:;<(9). 

 

Then, via interpolation, damage at each original analysis point in X-direction is computed and all 
the damage is summed up as follows: 

qo-e*
R/1m0(	(X) =h q\],/

R/1m0((ã)
E

/2"
	 [101] 
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qo-e*
-=1O(#	(X) =h q\],/-=1O(#(ã)

E

/2"
	 [102] 

qo-e*
-'/O(#	(X) =h q\],/-'/O(#(ã)

E

/2"
	 [103] 

qo-e*
n]=O	(X) =h q\],/

n]=O(ã)
E

/2"
	 [104] 

where; 
qo-e*
R/1m0(	(X) =	 Damage	in	position	X,	in	tth		month,		jth		quintile	(temperature),	due	to	single	axle	with	

weight	èV	
qo-e*
-=1O(#	(X) =	 Damage	in	position	X,	in	tth		month,		jth		quintile	(temperature),	due	to	tandem	axle	with	

weight	èV	
qo-e*
-'/O(#	(X) =	 Damage	in	position	X,	in	tth		month,		jth		quintile	(temperature),	due	to	tridem	axle	with	

weight	èV	
qo-e*
n]=O	(X) =	 Damage	in	position	X,	in	tth		month,		jth		quintile	(temperature),	due	to	quad	axle	with	

weight	èV	

An example 6@(Ap
B%,CDE 	(X) is shown in Figure 39. Once the damage distribution (after considering 

wheel wander) above is computed, then the maximum damage 6@(Ap'314
B%,CDE 	, which is the 

maximum damage in tth  month,  jth  quintile (temperature), due to kth axle (single, tandem etc.) is 
computed, as illustrated in Figure 39. Then total damage in all quintiles, due to all weights in all 
axles is computed 

q\](D) =h h (qo-e*D#=>
R/1m0( +qo-e*D#=>

-=1O(# +qo-e*D#=>
-'/O(# +qo-e*D#=>

n]=O )
qr

V2"

E

o2"
	 [105] 

q\](D)	 =	 Total	bottom-up	damage	in	month	t.	
NW =	 Number	of	weight	categories	for	each	axle	(equals	to	39	for	single	and	

tandem,	31	for	tridem	and	quad)	
j =	 Quintile	number	

An example variation of damage with time (145(&)) is shown in Figure 40.  

Once the damage caused by the axles for each month is computed, cumulative damage is 
calculated using the following formula: 

qS]#(D) =h q\](D/)
-

/2"
	 [106] 

where; 
qS]#(D)	 =	 Cumulative	damage	at	the	bottom	of	the	HMA	layers.	
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Figure 39. Total damage distribution after wheel wander. 

 

Figure 40. An example variation of bottom up damage with time.  

 

4.7.1 Bottom-up Fatigue Cracking Transfer Function 

The magnitude of bottom-up fatigue cracking us computed using the following empirical transfer 
function: 
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ïj\?--?#D]s(D) = ~
1
60Ä ~

j@D\]
1 + {(t+,'-∗t+∗Yt#,/0∗ 0?m	(L"-1(-))

Ä	 [107] 

where 

ïj\?--?#D]s(D)	 =	 Area	of	alligator	cracking	that	initiates	at	the	bottom	of	the	HMA	layers,	percent	of	
total	lane	area.	

qS]#(D)	 =	 Cumulative	damage	at	the	bottom	of	the	HMA	layers.	
Ci-bu	 =	 Transfer	function	regression	constants;	C4-bu	=	6,000;	C1-bu	=	1.00;	and	C2-bu	

=1.00	
j"∗	 =	 −2 ∗ j&∗	
j&∗ =	 −2.40874 − 39.748(1 + ℎ=S)D&.BEZ	

An example cumulative damage and bottom up fatigue cracking is shown in Figure 41.  

 

 

Figure 41. An example cumulative damage and fatigue cracking for a climate of Tampa, 
FL, structure of 4”AC (PG70-28), 6” Base, Subgrade, with full axle load spectra as input. 
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4.8 Top-Down Cracking 

Longitudinal top-down cracking originates near the surface and it is thought to be due to 
maximum tensile strain near the surface. In MEPDG documentation, it is stated that maximum 
tensile strain at the surface between the tires was the maximum observed in the cases analyzed in 
NCHRP 1-37A project (ARA Inc. ERES Consultants Division, 2004). In this work this 
conclusion could not be replicated. It was observed in this work that the magnitudes of the 
maximum tensile strain values in X- and Y- directions were quite low (see Figure 42). 
 
 

 

Figure 42. Critical strains computed at the top of AC due to tandem axle dual tire 

Several researchers noted that three-dimensional stress state near the surface include significant 
shear as well as axial strains (Wang et al., 2012; Wang & Roque, 2011). In a paper by Wang and 
Roque (Wang & Roque, 2011), the importance of use of principal strains in top-down cracking 
modeling is noted as follows: “…Study by the authors indicated that shear induced principal 
tensile stress (SIGMA-1) at tire edge could be 2 to 3 times greater than bending stress in 
magnitude at AC surface, which might be more likely responsible for the initiation of top-down 
cracking…”. Strain distribution in cartesian coordinate system and in principal directions for an 
example 3-layer structure is shown in Figure 43. As shown, the large magnitudes of tensile strain 
are observed in principal directions near the surface. It is postulated that these strains near the 
surface cause crack initiation, in an inclined/diagonal direction (not X- or Y-direction), which is 
consistent with the conclusions of past researchers (Wang et al., 2012; Wang & Roque, 2011) 
who have significant experience in modeling top-down cracking. 
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Figure 43. Strain distribution in cartesian coordinate system and in principal directions, for a 3-layer structure.
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In MEAPA, for top-down cracking, maximum major tensile principal strain near the tire within 
top 0.5” of the asphalt pavement layer was used in the fatigue life formulation instead of the 
maximum horizontal tensile strain (X- or Y-direction) at the surface. A more recent top-down 
cracking model is the model developed as part of the NCHRP Project 01-52 (Robert L Lytton et 
al., 2018). However, NCHRP Project 01-52 project resulted in a procedure based on Paris’s law 
of fracture growth and uses Artificial Neural Networks (ANNs) to estimate the J-integral. 
Unfortunately, trained ANN for the J-integral is not publicly available (only available to 
AASHTO). This makes it impossible for the results of NCHRP Project 01-52 to be used by any 
institution other than AASHTO. The use of maximum major principal strain near the pavement 
surface near the tire is the best intermediate solution until a more accurate and publicly available 
model is developed. 
 
The material level traditional fatigue life formulation used herein for top-down cracking is the 
same as that of the bottom up cracking:  
 

!! = #"#$!#%!# &
1

($%&'()*(&+,
)
-!".!"

*
1
+,

-!#.!#
	 [108] 

# = 10/.1/2
3$%

3&43$%
%5.678	

 
[109] 

 
 

[110] 

where, 

($%&'()*(&+,	 =	 Maximum	principal	tensile	strain	at	the	within	the	top	0.5”	of	AC	surface	layer	
Nf	 =	 Number	of	cycles	to	failure,	for	top-down	cracks	

kf1,	kf2,	kf3	 =	 Global	field	calibration	parameters	(from	the	NCHRP	1-40D	re-calibration;					
kf1	=	0.007566,	kf2	=	-3.9492,	and	kf3	=	-1.281).	

βf1,	βf2,	βf3	 =	 Local	or	mixture	specific	field	calibration	constants;	for	the	global	calibration	
effort,	these	constants	were	set	to	1.0.	

hac	 =	 height	of	the	AC	layer	
btdi	 =	 Coefficients:	btd1=	0.01,	btd2	=12,	btd3	=	15.676	and	btd4	=	2.8186	
E	 =	 Equivalent	modulus	of	AC	surface	layer	(at	the	given	temperature/frequency)	
Vbe	 =	 Effective	asphalt	content	by	volume	for	the	AC	surface	layer,	%	
Va	 =	 Percent	air	voids	in	the	HMA	mixture	for	the	AC	surface	layer,	%	

 

4.8.1 Calculation of Damage and Inclusion of the Effect of Wheel Wander 

Similar to the procedure for bottom-up cracking, the critical strains were computed at several 
analysis locations near the surface for single, tandem, tridem and quad axles (using dual tires). 
Steps of calculation of damage due to different axles and simulation of wheel wander are 
identical to those of bottom-up cracking, therefore, they will not be repeated for brevity. See the 
subsections of Bottom-Up Cracking section titled “Calculation of Damage and Inclusion of the 
Effect of Wheel Wander” for the details. 
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4.8.2 Top-Down Fatigue Cracking Transfer Function  

The magnitude of top-down fatigue cracking us computed using the following transfer function: 

f#$9&%:9;)(g) = (10.56) *
#/%<=

1 + i(?'()*%?"()*,9@	(B+,-($))
,	 [111] 

where 

f#$9&%:9;)(g)	 =	 Length	of	longitudinal	cracks	that	initiate	at	the	top	of	the	HMA	layer,	ft/mi.	
j*DE(g)	 =	 Cumulative	damage	at	the	top	of	the	HMA	layers.	
##%<=, #F%<=	klm	#/%<=	 =	 Transfer	function	regression	constants;	#/%<==	1,000;	##%<==7.00;	and	

#F%<==3.5	
	

An example top-down fatigue cracking for a long-life (perpetual) and standard thick asphalt 
pavement are shown in Figure 44. 

 

Figure 44. Example top-down cracking results for a long-life (perpetual) and standard 
thick asphalt pavement 

4.8.3 Validation of the Top-Down Cracking Model 

In order to validate the top-down cracking modeling procedure described above, pavement 
performance data from 13 freeway sections in different regions of Michigan was used. All the 
inputs were obtained from MDOT’s database that was used in the previous Pavement ME 
calibration efforts (Buch et al., 2009; Haider et al., 2014, 2016; Jamrah et al., 2014; M Emin 
Kutay & Jamrah, 2013). Appendix I shows all the inputs used in the MEAPA for the pavement 
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sections included in the validation. Figure 45 shows a comparison of measured and predicted top 
down cracking, both using the MEAPA and the Pavement ME software. As shown, MEAPA 
predictions are much closer to the line of equality and R2 is higher as compared to the Pavement 
ME. It is noted that, in this analysis, global calibration coefficients were used, i.e., local 
calibration was not done. 

 

 
Figure 45. Comparison of the top down cracking predicted by the MEAPA model, 

Pavement ME and Measured values for 13 MDOT sections. 
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4.9 AC Rutting 

AC rutting is primarily based on the vertical compressive strain and temperature of the AC layer. 
First, the vertical compressive strains at the center of the AC layers are calculated from the 
MatLEA analysis program. Then the following formula is used to compute the rutting ((Ayres Jr 
& Witczak, 1998; Kaloush & Witczak, 2000; Leahy, 1989): 

!!(#$%) = !'(#$%) ⋅ $( ⋅ %)' ⋅ 10*GH ⋅ ((+IH⋅*IH))(+JH⋅*JH) [112a] 

Δ!(#$%) = !!(#$%)ℎ#$% [112b] 

where; 
Dp(HMA)	 	 =	 Accumulated	permanent	or	plastic	vertical	deformation	in	the	HMA	layer/sub-

layer,	in.	
	o&("KL)			 =	 Accumulated	permanent	or	plastic	axial	strain	in	the	HMA	layer/sub-layer,	in/in.	
o'("KL) 		 	 =	 Resilient	or	elastic	strain	calculated	by	the	structural	response	model	at	the	mid-

depth	of	each	HMA	sub-layer,	in/in.	
h(HMA)	 =	 Thickness	of	the	HMA	layer/sub-layer,	in.	
n	 =	 Number	of	axle	load	repetitions.	
T	 =	 Mix	or	pavement	temperature,	°F.	
kz	 =	 Depth	confinement	factor	(kz=	k1	below	–	Page	3.3.49	in	MEPDG	formulation).	

	
k1	=	function	of	total	asphalt	layers	thickness	(hac,	in)	and	depth	(depth,	
in)	to	computational	point,	to	correct	for	the	confining	pressure	at	
different	depths	
	

k1r,2r,3r	 	 =	 Global	field	calibration	parameters	(from	the	NCHRP	1-40D	recalibration;	k1r	=	-
3.35412,	k2r	=	0.4791,	k3r	=	1.5606).	

β1r,	β2r,	β3r	 =	 Local	or	mixture	field	calibration	constants;	for	the	global	calibration,	these	
constants	were	all	set	to	1.0.	
	

Unlike the fatigue models where linear damage accumulation (Miner’s law) is assumed, the 
propagation of rutting is a nonlinear process. The plastic strain in the AC layers are calculated by 
following equivalent cycles approach, which is described in the next subsection. 

4.9.1 Equivalent Cycles Approach 

The equivalent cycles approach is similar to the method described in the MEPDG documentation 
((ARA Inc. ERES Consultants Division, 2004); Appendix GG). An illustration of the equivalent 
cycles approach for calculation of plastic strain is provided in Figure 46. As shown, for an HMA 
layer, the curves of the propagation of plastic strain in different months and quintiles 
(temperatures) are different. In order to account for these changes in the predicted permanent 
strain, the approach described below is used.   
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Total plastic strain !!,#$% at the end of sub-season , − 1 is calculated using the total number of 
traffic repetitions )-,/0) (see point 1 in Figure 46), temperature of the particular season ((/0)) 
and resilient (vertical) strain computed for this season (!&,#$%): 

 
Figure 46. Illustration of the equivalent cycles approach for calculation of plastic strain in 

HMA 

!!,/0) = !1,/0) ⋅ $( ⋅ 10*GH ⋅ (/0)*IH ⋅ )/0)*JH  [113] 

In the next sub-season i, the layer temperature is (/ and resilient (vertical) strain for load and 
material conditions is !!,#. At the beginning of the next sub-season i (point 2), there is an 
equivalent number of traffic repetitions )-0234/1,/ that corresponds to the total plastic strain at the 
end of sub-season i-1 but under conditions prevailing in the new sub-season ((/, !!,#). This 
)-0234/1,/ can be calculated from the following equation:  

"'$()*#&,# = $ !!,#$%
%+!&,#10,'.(#

,".)
%/,#.

	
 

[114] 

By adding the number of traffic repetitions at season i ()/) to the total equivalent number of 
repetitions ()-0234/1,/)  and using it in the specific material model, it is possible to estimate point 
3, which corresponds to the total plastic strain at the end of sub-season i (!!,#): 

Equivalent Cycles Approach
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)-,/ = )-0234/1,/ + )/ [115] 

!!,/ = !1,/ ⋅ $( ⋅ 10*GH ⋅ (/*IH ⋅ )-,/*JH 	
 

[116] 

An important note here is that since the process described above is nonlinear, order of loading 
and the temperature quintiles matters. Figure 47 shows the effect of order of loading on the 
predicted rutting, which can be significant. In this figure: 

• Order 1 (default): For each month; calculations are done for quintile 1, quintile 2, quintile 
3, quintile 4 and quintile 5, in this order. Within each quintile; single, tandem, tridem and 
quad axle repetitions are applied, in this order. 

• Order 2 (reversed axle order): For each month; calculations are done for quintile 1, 
quintile 2, quintile 3, quintile 4 and quintile 5, in this order. Within each quintile; quad, 
tridem, tandem and single axle repetitions are applied, in this order. 

• Order 3 (reversed quintile order): For each month; calculations are done for quintile 5, 
quintile 4, quintile 3, quintile 2 and quintile 1, in this order. Within each quintile; single, 
tandem, tridem and quad axle repetitions are applied, in this order. 

 

 
Figure 47. Effect of order of loading on the predicted rutting 

In MEAPA, Order 1 above is used, which produced similar results as the Pavement ME 
software. A comparison between the Pavement ME and MEAPA results for AC rutting is shown 
in Figure 48. 
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Figure 48. Comparison of Pavement ME and MEAPA for AC rutting. 
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4.10 Unbound Base and Subbase Layer Rutting 

Unbound (base and subbase) layer rutting is computed using a procedure similar to the AC layer. 
The basic phenomenological relationship is the model developed by Tseng and Lytton (Tseng & 
Lytton, 1989), which is slightly modified during the NCHRP 1-37A project: 

(& = $M#%M#(NsOi
%P
Q
)
R
/
			 [117] 

∆&(D)S9D):)= ℎD)S9D):(&	 [118] 

where; 
∆&(D)S9D):)	 =	 Permanent	or	plastic	deformation	for	the	unbound	layer,	in.	
(&	 =	 Permanent	or	plastic	strain,	in/in.	
n	 =	 Number	of	axle	load	applications.	
ev	 =	 Average	vertical	resilient	or	elastic	strain	in	the	layer/sub-layer	and	calculated	by	the	

structural	response	model,	in/in.	
β	 =	 A	parameter	dependent	on	moisture	content	of	the	soil		
r	 =	 A	parameter	related	moisture	content	and	resilient	modulus	of	the	soil	
sO	 =	 Ratio	sO = (5/(' ,	where;	
	 	 eo=Intercept	determined	from	laboratory	repeated	load	permanent	deformation	tests,	

in/in.,		
er=Resilient	strain	imposed	in	laboratory	test	to	obtain	material	properties	εo,	β,	and	
r,	in/in.	

ℎD)S9D): 	 =	 Thickness	of	the	unbound	layer/sub-layer,	in.	
ks1	 =	 Global	calibration	coefficients;	ks1=1.673	for	granular	materials	and	1.35	for	fine-

grained	materials.	
βs1	 =	 Local	calibration	constant	for	the	rutting	in	the	unbound	layers;	the	local	calibration	

constant	was	set	to	1.0	for	the	global	calibration	effort.	

The parameters %, 1 and 22 = 35/3' are computed using the following relationships (ARA Inc. 
ERES Consultants Division, 2004): 

$ = 10%5.6###7%5.5#T6U1V+ 	 [119]	

z = 107{
ln |k#k7

}

1 − 107W�

#
W

 [120]	

sO =
k#iQ

/ + k7i
P
Q
#50R

/

2 	 [121]	

 

Ä* = 51.712 *
ÅÇ
2555,

%5.X65UYVZ1.''0"

	
 

[122]	

where; 
Ä*	 	 =	 Water	content	(%).	
ÅÇ =	 Resilient	modulus	of	the	layer/sublayer	(psi).	
ÑÄÖ =	 Ground	water	table	depth	(ft).	
k#, k7 =	 Coefficients;	k# = 0.15	and	k7 = 20	



 74 

 

Since resilient modulus and moisture content can change from one month to another, a similar 
equivalent cycles approach is needed to compute the progression of plastic strain (i.e. rutting) 
with time. 

4.10.1 Equivalent Cycles Approach 

Total plastic strain 3!,/0) at the end of sub-season , − 1 is calculated using the total number of 
traffic repetitions )-,/0), moisture content (and related parameters), and resilient (vertical) strain 
computed for this season (31,/0)): 

(&,(%# = $M#%M#Ü(N,(%#áÜsO,(%#ái
%\

(Q3(')
])4,3('	^

_

7/3('8
	
	

[123] 

At the beginning of the next sub-season i, there is an equivalent number of traffic repetitions 
)-0234/1,/ that correspond to the total plastic strain at the end of sub-season i-1 but under 
conditions prevailing in the new sub-season (22,/ , 1/, 31,/…etc.). This )-0234/1,/ can be calculated 
from the following equation:  

!789:;<=,< =
#<

$
>
?!

 [124] 

$ = ln'
(@>)@>*9,<+=,<

+A,<8>
, [125] 

By adding the number of traffic repetitions at season i ()/) to the total equivalent number of 
repetitions ()-0234/1,/)  and using it in the specific material model, it is possible to compute total 
plastic strain at the end of sub-season i (3!,/): 

 
[126] 

+A,< = (@>)@>-+=,<.-*9,<./
8B

(C!)
DE",!	F

G
%&!'

	
 

[127] 

 
An example base rutting progression with time is shown in Figure 49. 
 

, ,t equivt i i in nn -= +
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Figure 49. Comparison of Pavement ME and MEAPA for unbound layer rutting 
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4.11 Subgrade Layer Rutting 

Subgrade layer rutting is computed using a procedure very similar to the unbound base and 
subbase layers. The same basic phenomenological relationship developed by Tseng and Lytton 
(Tseng & Lytton, 1989) is used to compute plastic strain: 

(& = $MDS@#%MDS@#(NsOi
%P
Q
)
R
/
			

 

[128] 

where; 
(&	 =	 Permanent	or	plastic	strain	in	subgrade	layer,	in/in.	
n	 =	 Number	of	axle	load	applications.	
ev	 =	 Average	vertical	resilient	or	elastic	strain	calculated	by	the	structural	response	model,	

in/in.	
β	 =	 A	parameter	dependent	on	moisture	content	of	the	soil		
r	 =	 A	parameter	related	moisture	content	and	resilient	modulus	of	the	soil	
sO	 =	 Ratio	sO = (5/(' ,	where;	
	 	 eo=Intercept	determined	from	laboratory	repeated	load	permanent	deformation	tests,	

in/in.,		
er=Resilient	strain	imposed	in	laboratory	test	to	obtain	material	properties	εo,	β,	and	
r,	in/in.	

%MDS@#	 =	 Global	calibration	coefficient	%MDS@#	=	1.35	for	fine-grained	materials.	
$MDS#	 =	 Local	calibration	constant	for	the	rutting	in	the	unbound	layers;	the	local	calibration	

constant	was	set	to	1.0	for	the	global	calibration	effort.	However,	in	this	project,	the		
$MDS#=0.6	was	used	since	this	value	produced	more	realistic	subgrade	rutting.	

The parameters %, 1 and 22 = 35/3' are computed using the same relationships as those of the 
unbound layers described in the previous section. 

For subgrade, vertical elastic strain (31) is computed at two different locations: (i) top of 
subgrade and (ii) 6” below the top of the subgrade. The progression of plastic strain at these two 
locations were computed using the same procedure (i.e., equivalent cycles approach) described 
in the previous section. At each season, the following $6478 parameter was computed  

%MDS@ =
ln *

(&,`a$9&%MDS@'+:O
(&,`a($9&%MDS@'+:O46")

,

6 		

 

[129] 

where; 
(&,`a$9&%MDS@'+:O		 =	 Plastic	strain	at	the	top	of	the	subgrade,	in/in	
(&,`a($9&%MDS@'+:O46") =	 Plastic	strain	6”	below	the	top	of	the	subgrade,	in/in	

It should be noted that the equation above assumes the strain on the top of the subgrade is more 
than the strain within the subgrade. This may not be true in certain conditions and the $6478 
parameter may be negative, which is unrealistic. Therefore, if  $6478 value is less than 10-6, it is 
set to $6478 = 1009.  

Finally, subgrade rutting is computed using the following relationship: 
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∆&(MDS@'+:O)=
(&,`a$9&%MDS@'+:O

%MDS@
	Ü1 − i%.9,$:c$%;.<+=á		

 

[130] 

where; 
(&,`a$9&%MDS@'+:O	 =	 Plastic	strain	at	the	top	of	the	subgrade,	in/in	
∆&(MDS@'+:O) =	 Subgrade	rutting,	in.	
ℎSO:'9*. =	 Depth	to	bedrock,	ft.	

 
Figure 50. Comparison of Pavement ME and MEAPA for subgrade rutting
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4.12 International Roughness Index (IRI) 

The IRI for flexible pavements is calculated using the following formula: 

626 = 626: + 7)(29) + 7;(:7-:-<=) + 7>((7) + 7?(;:)	 [131] 

where; 
äsä	 =	 International	roughness	index,	in/mile.	
äsä5	 =	 Initial	IRI,	in/mile	
RD	 =	 Total	rut	depth,	in	=	∆&("KL) + ∆&(D)S9D):) + ∆&(MDS@'+:O)	
f#$9$+, 	 =	 Total	fatigue	cracking	(including	bottom-up	and	top-down	cracking),	%	
TC =	 Thermal	cracking,	ft/mile	
SF =	 Site	factor	
Ci =	 Calibration	coefficients.	The	default	values	of	these	coefficients	are:	C1=40,	C2=	

0.4,	C3=0.008	and	C4=0.015.	
	
Total fatigue cracking in the IRI formulation above is computed using the formula below, which 
assumes 12 ft wide design lane (to convert :7-@ from ft/mile to percentage): 

	

f#$9$+, = f#SD + f#$:(
ãg
åçéi)

1ãg	(kèèêåim	Öj	ëÇkë%çlí	ìçmgℎ)
5280ãg/åçéi ∗ 12ãg(ékli	ìçmgℎ) ∗ 100	

[132] 

Site factor is defined using the following set of equations:  

	
[133] 

	
[134] 

	
[135] 

where; 
 
SF	 =	 Site	factor	
Age	 =	 Pavement	age	(years)	
FI	 =	 Freezing	index,	°F-days.	
Rain	 =	 Mean	annual	rainfall	(in.)	
P4	 =	 Percent	material	passing	No.	4	sieve	for	the	subgrade	soil	
P200	 =	 Percent	passing	No.	200	sieve	for	the	subgrade	soil.	

( ) 1 5.SF Frost Swell Age= + ´

( ) ( ) 41 1Frost Ln Rain FI Pé ù= + ´ + ´ë û

( ) ( ) 2001 1Swell Ln Rain FI Pé ù= + ´ + ´ë û
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5. MODELING AC-CSM or AC-CSM-GB: ASPHALT CONCRETE OVER 
CHEMICALLY STABILIZED MATERIAL 

The Chemically Stabilized Material (CSM) layers provide a stiff base layer that serve a good 
foundation for the overlying AC layers and help spread the load on a large area so that rutting in 
the base, subbase and subgrade are minimized. However, the CSM layers can degrade over time 
due to load-related fatigue cracking, which can propagate to the surface in the form of reflective 
cracks. Therefore, progression of reflective cracking over time is predicted, in addition to the 
other distresses. The following is the list of distresses computed for the AC-CSM and AC-CSM-
GB pavement types: 

1. AC reflective cracking due to the fatigue damage in the CSM layer 
2. AC top-down fatigue cracking (ft/mile) 
3. AC bottom-up fatigue cracking (%) 
4. AC thermal cracking (ft/mile) 
5. Rutting – AC, base, subbase, subgrade (in) 
6. International Roughness Index (IRI) (in/mile) 

The steps of the calculation of AC top-down fatigue cracking, bottom-up fatigue cracking, 
thermal cracking (ft/mile), and rutting of the AC, base and subgrade layers are identical to those 
of the AC-GB pavement type described in the previous section. Therefore, it will not be repeated 
here for brevity.  

The general steps of the algorithm are as follows: 
1. Development of the |E*| master curves for the AC layer(s) 
2. Sublayering of the structure 
3. Calculating equivalent frequencies and load correction factors using the MEPDG 

procedure 
4. Running the climatic model and obtaining temperature at the center of each sublayer 
5. Running the Global Aging System (GAS) model 
6. Calculation of the elastic moduli in five quintiles in a given month using the temperature 

at each quintile, frequency and the |E*| master curve coefficients. 
7. Defining the critical strain locations for each type of distress 
8. Running the thermal cracking model 
9. Running the MatLEA structural response model at each quintile of each month, then: 

a. Compute the top-down cracking increment 
b. Compute the bottom-up cracking increment 
c. Compute the AC rutting increment 
d. Compute the CSM layer damage and cracking increment 
e. Compute the base/subbase rutting (same model) increment  
f. Compute the subgrade rutting increment. 
g. Summation of the distresses computed during 5 quintiles of each month to 

compute the cumulative monthly distresses. 
10. Compute IRI values for each month 
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5.1 Reflective Cracking due to the CSM Layer 

The reflective cracking due to a CSM layer is computed via a set of equations that include a 
fatigue life formulation, Miner’s law of linear damage growth and a convolution-like transfer 
function to convert damage to observed reflective cracking in the field. The material-level CSM 
fatigue life formulation used herein is as follows: 
 

!!?dK = 10
5.7TFW>'%

e4
K9f

5.51FXW>" 	
[136] 

where; 
ñ$	 =	 tensile	stress	at	the	bottom	of	the	CSM	layer	(psi)	
!!?dK	 =	 Number	of	cycles	to	failure	for	the	CSM	layer	
Åós =	 Modulus	of	Rupture	(flexular	strength)	of	the	CSM	layer,	psi	
βg#, βgF =	 Calibration	factors,	default	equal	to	unity.	

5.1.1 Calculation of Damage 

The damage growth in the CSM layer is based on the Miner’s law of linear damage growth, 
similar to the bottom-up fatigue cracking model in AC layer. Figure 32, Figure 33, Figure 34, 
and Figure 35 show critical strains computed by single, tandem, tridem and quad axles, 
respectively.  For CSM layer, at each of these X- and Y locations, the maximum tensile stresses 
are computed at different X and Y locations at bottom of CSM, and used to calculate the number 
of cycles to failure using the following formula: 

jh
ijklmn =ò

!(,$,;=
ijklmn

!!?dK
U7

.a#
	 [137] 

jhopkqnr =ò
!(,$,;=
opkqnr

!!?dK
U7

.a#
	 [138] 

jhosjqnr =ò
!(,$,;=
osjqnr

!!?dK
U#

.a#
	 [139] 

jh
tupq =ò

!(,$,;=
tupq

!!?dK
U#

.a#
	 [140] 

where;  

!!"#$ =	 Number	of	cycles	to	failure	in	CSM	layer,	based	on	the	tensile	stress	at	the	bottom	of	CSM,	in	ith	
month,	jth	quintile	due	to	axle	weight	wk		

!(,$,;=
M()@,O	 =	 Number	of	single	axles	for	each	month	ç	(ç = 1…12),	for	year	g	(g = 1… g+,	where	g+	is	analysis	

duration),	corresponding	to	axle	weight	öv	Where	% = 1…39	and	öv = 3000, 4000,…41000	
(lb).	

!(,$,;=
$+):OE =	 Number	of	tandem	axles	for	each	month	ç	(ç = 1…12),	for	year	g	(g = 1… g+,	where	g+	is	analysis	

duration),	corresponding	to	axle	weight	öv	Where	% = 1…39	and	öv = 6000, 8000,…82000	
(lb).	
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!(,$,;=
$'(:OE =	 Number	of	tridem	axles,	for	each	month	ç	(ç = 1…12),	for	year	g	(g = 1… g+,	where	g+	is	analysis	

duration),	corresponding	to	axle	weight	öv,	where	% = 1…31	and	öv = 12000, 15000,…102000	
(lb).	

õj,o,w?
tupq =	 Number	of	quad	axles	i,	for	each	month	ç	(ç = 1…12),	for	year	g	(g = 1… g+,	where	g+	is	analysis	

duration),	corresponding	to	axle	weight	öv	Where	% = 1…31	and	öv = 12000, 15000,…102000	
(lb).	

Total damage in each quintile due to each axle are added to total damage   

j*ME(g) =ò Üjh
ijklmn +jhopkqnr +jhosjqnr +jh

tupqá
X

ha#
	 [141] 

j*ME(g)	 =	 Total	CSM	damage	in	month	t.	
k =	 k=1	for	single,	k=2	for	tandem,	k=3	for	tridem	and	k=4	for	quad	axle	
j =	 Quintile	number	

Once the damage caused by the axles for each month is computed, cumulative damage is 
calculated using the following formula: 

j*ME*DE(g) =ò j*ME(g()
$

(a#
	 [142] 

where; 
j*ME*DE(g)	 =	 Cumulative	damage	in	CSM	layer.	

5.1.2 Calculation of Reflective Cracking 
First step in computing the reflective cracking on the AC surface is the computation of the 
cracked area within the CSM layer using the following formula: 
 

#ù*ME(g) =
100

1 + i6%6B+9-+,-($)
	 [143] 

where; 
j*ME*DE(g)	 =	 Cumulative	damage	in	CSM	layer.	
#ù*ME(g) =	 Cracked	area	in	CSM	layer.	
 	 	

Then total reflected crack is computed using the following (convolution-like) equation: 
 

Ösù(g) = 	ò s#(g − û) ∗ Ü#ù*ME(û + 1) − #ù*ME(û)á
$%#

xa#
	 [144] 

where; 
Ösù(g)	 =	 Total	reflected	crack	area,	%.	
#ù*ME(g) =	 Cracked	area	in	CSM	layer,	as	decimal	(not	%).	
s#(g) =	 Percent	cracking	relected	for	age	t	

 
 
Percent cracking reflected for age t (27(<)) can be computed using the following empirical 
formula (Part 3, Chapter 6 of (ARA Inc. ERES Consultants Division, 2004)); 
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s#(g) =
100

1 + i+4S$	
[145] 

where; 
s#(g)	 =	 Percent	cracking	reflected	for	age	t	
g =	 Time	(in	years)	
k, ü =	 Constants;	k = 3.5	 + 	0.75 ∗ hyz	and	ü = 	−0.688584 − 3.37302 ∗ hyz%5.7#X/67	

where	hAC	=	total	height	of	the	AC	layers	above	CSM	layer.	

5.1.3 Reduction of Modulus of CSM Layer Due to Damage 

Typical CSM layer modulus is initially quite high. However, as fatigue damage grows within the 
CSM layer, this modulus decreases with time. Reduction of modulus of CSM layer is modeled 
using the following relationship: 

+(g) = +E() +
+E+{ − +|}~

1 + i%/4#/B+9-+,-($)
	 [146] 

where; 
+E+{	 =	 Maximum	CSM	modulus,	psi	
+|}~ =	 Minimum	CSM	modulus,	psi	
j*ME*DE(g)	 =	 Cumulative	damage	in	CSM	layer,	at		the	end	of	each	month,t.		

An example intermediate outputs of the CSM model is shown in Figure 51, which shows the 
reduction in CSM modulus with time, growth of cracked area in CSM with time and progression 
of reflective cracking. 
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Figure 51. An example intermediate outputs of the CSM model including the (a) reduction 

in CSM modulus with time, (b) growth of cracked area in CSM with time and (c) 
progression of reflective cracking. 

 

5.2 International Roughness Index (IRI) 

The IRI for flexible pavements with CSM is calculated using the same formula as that of AC-GB 
pavement type, except that the total load-related cracking includes the reflective cracking due to 
the CSM layer:  

626 = 626: + 7)(29) + 7;(:7-:-<=) + 7>((7) + 7?(;:)	 [147] 

where; 
äsä	 =	 International	roughness	index,	in/mile.	
äsä5	 =	 Initial	IRI,	in/mile	
RD	 =	 Total	rut	depth,	in	=	∆&("KL) + ∆&(D)S9D):) + ∆&(MDS@'+:O)	
f#$9$+, 	 =	 Total	load-related	cracking,	%	
TC =	 Thermal	cracking,	ft/mile	
SF =	 Site	factor	
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Ci =	 Calibration	coefficients.	The	default	values	of	these	coefficients	are:	C1=40,	C2=	
0.4,	C3=0.008	and	C4=0.015.	

	
Total load-related cracking (:7-:-<=) in the IRI formulation above is computed using the formula 
below, which assumes 12 ft wide design lane (to convert :7-@ from ft/mile to percentage): 

	

f#$9$+, = f#SD + f#$: *
ãg
åçéi,

1ãg	(kèèêåim	Öj	ëÇkë%çlí	ìçmgℎ)
5280ãg
åçéi ∗ 12ãg(ékli	ìçmgℎ)

∗ 100 + Ösù(g)	 [148] 

where; 
Ösù(g)	 =	 Total	reflected	crack	area,	%.	
f#SD =	 Bottom-up	fatigue	cracking,	%.	
f#$: =	 Top-down	fatigue	cracking,%.	

 
Site factor is defined using the following set of equations:  

	
[149] 

	
[150] 

	
[151] 

where; 
 
SF	 =	 Site	factor	
Age	 =	 Pavement	age	(years)	
FI	 =	 Freezing	index,	°F-days.	
Rain	 =	 Mean	annual	rainfall	(in.)	
P4	 =	 Percent	material	passing	No.	4	sieve	for	the	subgrade	soil	
P200	 =	 Percent	passing	No.	200	sieve	for	the	subgrade	soil.	

( ) 1 5.SF Frost Swell Age= + ´

( ) ( ) 41 1Frost Ln Rain FI Pé ù= + ´ + ´ë û

( ) ( ) 2001 1Swell Ln Rain FI Pé ù= + ´ + ´ë û
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6. MODELING AC-EAC-GB and AC-EAC-CSM: ASPHALT CONCRETE 
OVER EXISTING ASPHALT CONCRETE 

Asphalt overlays over existing asphalt overlays are modeled somewhat similar to the AC-CSM 
pavement type. The main difference is how the reflective cracking is computed. The following is 
the list of the distresses computed for this pavement type: 

1. AC reflective cracking due to the damage in the existing asphalt concrete (EAC) 
2. AC top-down fatigue cracking (ft/mile) 
3. AC bottom-up fatigue cracking (%) 
4. AC thermal cracking (ft/mile) 
5. Rutting – AC, base, subbase, subgrade (in) 
6. International Roughness Index (IRI) (in/mile) 

The steps of the calculation of AC top-down fatigue cracking, bottom-up fatigue cracking, 
thermal cracking (ft/mile), and rutting of the AC, base and subgrade layers are identical to those 
of the AC-GB pavement type described earlier. Therefore, it will not be repeated here for 
brevity.  

The general steps of the algorithm are as follows: 
1. Development of the |E*| master curves for the AC layer(s) 
2. Sublayering of the structure 
3. Calculating equivalent frequencies and load correction factors using the MEPDG 

procedure 
4. Running the climatic model and obtaining temperature at the center of each sublayer 
5. Running the Global Aging System (GAS) model 
6. Calculation of the elastic moduli in five quintiles in a given month using the temperature 

at each quintile, frequency and the |E*| master curve coefficients. 
7. Defining the critical strain locations for each type of distress 
8. Running the thermal cracking model 
9. Running the MatLEA structural response model at each quintile of each month, then: 

a. Compute the top-down cracking increment 
b. Compute the bottom-up cracking increment 
c. Compute the AC rutting increment 
d. Compute the EAC layer damage and cracking increment 
e. Compute the base/subbase rutting (same model) increment  
f. Compute the subgrade rutting increment. 
g. Summation of the distresses computed during 5 quintiles of each month to 

compute the cumulative monthly distresses. 
10. Compute IRI values for each month 

 

6.1 Calculation of Damage and Reflective Cracking Due to Existing Asphalt Concrete 

The existing asphalt concrete (EAC) layer modeled in a very similar to the traditional AC layer. 
The main difference is that since the EAC layer is a ‘damaged’ layer, where in-situ dynamic 
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modulus master curve is somewhat difficult to estimate. Similar to AC, the following sigmoid 
formulation is used to represent the |E*| master curve for the EAC layer: 

éóíÜ|+∗|Ä~=Å|ÅÇÉ=á = ë# +
ëF

1 + i*#4*@,9@(($.)	
[152]	

where; 
|+∗|Ä~=Å|ÅÇÉ=	 =	 Dynamic	modulus	of	EAC	layer	in	undamaged	state.	

g' =	 Time	of	loading	at	the	reference	temperature.	
ë# =	 Minimum	value	of	+∗.	

ë# + ëF =	 Maximum	value	of	+∗.	
ëU, ë/ =	 Parameters	describing	the	shape	of	the	sigmoidal	function.	

 
The equation above represents the |E*| master curve of the EAC layer in its undamaged state. 
Effect of damage on the |E*| master curve is modeled through the following relationship: 
 

|+∗|=Å|ÅÇÉ= = 10*' +
|+∗|Ä~=Å|ÅÇÉ= − 10*'

1 + i%5.U4X,9@(B$,ABC($))
	

[153]	

where; 
|+∗|=Å|ÅÇÉ=	=	 Dynamic	modulus	of	the	EAC	layer	in	a	damaged	state	(before	overlay	construction)	
jSDÑL?(g) =	 Total	bottom-up	damage	within	EAC	layer	in	month	t.	

 
The calculation procedure of damage within EAC layer in month t (i.e., 974A%B(<)) is identical that 
of the bottom-up damage calculation procedure described earlier for the AC-GB pavement type. 
The only difference is that the evaluation point for the maximum tensile strain is the bottom of 
the EAC layer. As damage grows within the EAC layer, at the end of each month, 974A%B(<) is 
updated and used in the equation above to compute a new |>∗|DEFEGHD, which is subsequently 
used in the MatLEA strain calculations in the upcoming month. 
 
In order to calculate the reflective cracking, cracked area within the EAC layer is needed (just 
like the model for CSM), which is computed using the following formula: 
 

#ùÑL?(g) =
100

1 + i6%6B$,ABC($)
	 [154] 

where; 
jSDÑL?(g)	 =	 Cumulative	bottom-up	damage	within	EAC	layer	in	month	t.	
#ùÑL?(g) =	 Cracked	area	in	EAC	layer.	
 	 	

Then total reflected crack is computed using the following (convolution-like) equation: 
 

Ösù(g) = 	ò s#(g − û) ∗ Ü#ùÑL?(û + 1) − #ùÑL?(û)á
$%#

xa#
	 [155] 

where; 
Ösù(g)	 =	 Total	reflected	crack	area,	%.	
#ùÑL?(g) =	 Cracked	area	in	EAC	layer,	as	decimal	(not	%)	
s#(g) =	 Percent	cracking	relected	for	age	t	
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Percent cracking reflected for age t (27(<)) can be computed using the following empirical 
formula (Part 3, Chapter 6 of (ARA Inc. ERES Consultants Division, 2004)); 

s#(g) =
100

1 + i+4S$	
[156] 

where; 
s#(g)	 =	 Percent	cracking	rfelected	for	age	t	
g =	 Time	(in	years)	
k, ü =	 Constants;	k = 3.5	 + 	0.75 ∗ hyz	and	ü = 	−0.688584 − 3.37302 ∗ hyz%5.7#X/67	

where	hAC	=	total	height	of	the	AC	layers	above	EAC	layer.	

6.2 International Roughness Index (IRI) 

The IRI formulations for AC-EAC pavement type identical to those of the AC-CSM pavement 
type, therefore, they are not repeated here for brevity.  
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8. APPENDIX G. MatLEA solution based on Burmister Layered Elastic 
Formulations 
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8.1 Description of the MatLEA Solution 

The MatLEA formulations and computational steps are almost identical to those of the MnLayer 
software (Khazanovich & Wang, 2007). The concept is based on the Burmister’s multi layered 
elastic theory (Burmister, 1945). The main differences between the MnLayer software and 
MatLEA are: 

• A, B, C, D parameters are computed via 3D matrix inversion (making the program faster) 

• The integration over the ‘m’ (the inverse Henkel transform variable) is done via bulk 
matrix operations. 

 
In MatLEA solution, the boundaries between the layer interfaces are used to compute the main 
parameters called A, B, C and D shown in the figures below. Problem geometry, dimensions and 
material property inputs are illustrated in Figure G. 2.  
 
Figure G. 3, Figure G. 4, Figure G. 5 and Figure G. 6 show the vertical displacement, horizontal 
displacement, vertical stress and shear stress formulations. For each of these formulations, 
boundary conditions at the interfaces were considered to come up with equations for A, B, C and 
D of each layer (See Figure G. 9, Figure G. 10, Figure G. 11 and Figure G. 12). Then a grand 
matrix created for solution of A, B, C and D based on the surface load (see Figure G. 13). 
The grand matrix in Figure G. 13 is in the form of a linear system of equations defined as 
[M]{X}=[Y]  (matrix operations). The matrix X can be solved via least square method as 
follows: 
 

? = (@I@)0J(@A) 
 

Figure G. 1 Least squares solution formulation 

 
Once A, B, C and D values in matrix X are obtained for each layer, equations shown in Figure G. 
3, Figure G. 4, Figure G. 5, Figure G. 6, Figure G. 7 and Figure G. 8 are used to compute vertical 
displacement, horizontal displacement, vertical stress, shear stress, radial stress and tangential 
stress, respectively. 
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Figure G. 2 Problem geometry, dimensions and material properties 
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Figure G. 3 Vertical displacement formulations 
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Figure G. 4 Horizontal displacement formulations 
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Figure G. 5 Vertical stress formulations 
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Figure G. 6 Shear stress formulations 
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Figure G. 7 Radial stress formulations 

 

 

Figure G. 8 Tangential stress formulations
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For ¶ = ℎ(, layer i:  ì((`ac3) =

#4Ü3
Ñ3
[−åiEc3 åi%Ec3 (2 − 4•( −åℎ()iEc3 (2 − 4•( +åℎ()i%Ec3] ß

ù(
§(
#(
j(

® 

For ¶ = 0, layer i+1: ì(4#(`a5) =
#4Ü3D'
Ñ3D'

[−å å (2 − 4•(4#) (2 − 4•(4#)] ß

ù(4#
§(4#
#(4#
j(4#

® 

 
At the interface between i and i+1; ì((`ac3) −ì(4#(`a5) = 0 

1 + '!
(!

[−+,"#! +,$"#! (2 − 4'! −+ℎ!),"#! (2 − 4'! ++ℎ!),$"#!] 3
4!
5!
6!
7!
8 − 1 + '!%&(!%&

[−+ + (2 − 4'!%&) (2 − 4'!%&)] 3
4!%&
5!%&
6!%&
7!%&

8

= 0 

[−+,"#! +,$"#! (2 − 4'! −+ℎ!),"#! (2 − 4'! ++ℎ!),$"#!] 3
4!
5!
6!
7!
8 − ;![−+ + (2 − 4'!%&) (2 − 4'!%&)] 3

4!%&
5!%&
6!%&
7!%&

8 = 0 

where 

©( =
+((1 + •(4#)
+(4#(1 + •()
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Figure G. 9 Boundary condition at the layer interfaces, based on displacement 
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Figure G. 10 Boundary condition at the layer interfaces, based on vertical stress 
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Figure G. 11 Boundary condition at the layer interfaces, based on horizontal displacement 
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For = = ℎ#, layer i:  D2+# = [/8163 −/8$163 (24# +/ℎ#)8163 (24# −/ℎ#)8$163] A
7#
9#
:#
>#
B 

For = = 0, layer i+1: D2+(#8%) = [/ −/ 24#8% 24#8%] A
7#8%
9#8%
:#8%
>#8%

B 

At the interface between i and i+1; D2+#(+563) − D2+(#8%)(+50) = 0 
 

[5/MN! −5/8MN! (22< +5ℎ<)/MN! (22< −5ℎ<)/8MN!] ;

$<
<<
=<
><

? − [5 −5 22<O> 22<O>] ;

$<O>
<<O>
=<O>
><O>

? = 0 

 

Then: 

[5/MN! −5/8MN! (22< +5ℎ<)/MN! (22< −5ℎ<)/8MN! −5 5 −22<O> −22<O>]

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
$<
<<
=<
><
$<O>
<<O>
=<O>
><O>⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 0 

 

Figure G. 12 Boundary condition at the layer interfaces, based on shear stress
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Figure G. 13 Grand M matrix created for solution of A, B, C and D for each layer.
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9. APPENDIX H. Comparison of MatLEA with CHEVLAY2 and JULEA. 

 
Several example comparisons between the MatLEA solution and  CHEVLAY2 and JULEA are 
shown in   figures below. 
 

 
Figure H. 14 MatLEA vs CHEVLAY2 Microstrain-z 
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Figure H. 15 MatLEA vs CHEVLAY2 Microstrain-r 
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Figure H. 16 MatLEA vs CHEVLAY2 Microstrain-t
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Figure H. 17 MatLEA vs CHEVLAY2 Microstrain-rz
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Figure H. 18 MatLEA vs JULEA Microstrain-z 
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Figure H. 19 MatLEA vs JULEA Microstrain-r 
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Figure H. 20 MatLEA vs JULEA Microstrain-t 
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Figure H. 21 MatLEA vs JULEA Microstrain-rz 

 
 
 
 
 


